
Springer Theses
Recognizing Outstanding Ph.D. Research

Rethinking Causality 
in Quantum 
Mechanics

Christina Giarmatzi



Springer Theses

Recognizing Outstanding Ph.D. Research



Aims and Scope

The series “Springer Theses” brings together a selection of the very best Ph.D.
theses from around the world and across the physical sciences. Nominated and
endorsed by two recognized specialists, each published volume has been selected
for its scientific excellence and the high impact of its contents for the pertinent field
of research. For greater accessibility to non-specialists, the published versions
include an extended introduction, as well as a foreword by the student’s supervisor
explaining the special relevance of the work for the field. As a whole, the series will
provide a valuable resource both for newcomers to the research fields described,
and for other scientists seeking detailed background information on special
questions. Finally, it provides an accredited documentation of the valuable
contributions made by today’s younger generation of scientists.

Theses are accepted into the series by invited nomination only
and must fulfill all of the following criteria

• They must be written in good English.
• The topic should fall within the confines of Chemistry, Physics, Earth Sciences,

Engineering and related interdisciplinary fields such as Materials, Nanoscience,
Chemical Engineering, Complex Systems and Biophysics.

• The work reported in the thesis must represent a significant scientific advance.
• If the thesis includes previously published material, permission to reproduce this

must be gained from the respective copyright holder.
• They must have been examined and passed during the 12 months prior to

nomination.
• Each thesis should include a foreword by the supervisor outlining the signifi-

cance of its content.
• The theses should have a clearly defined structure including an introduction

accessible to scientists not expert in that particular field.

More information about this series at http://www.springer.com/series/8790

http://www.springer.com/series/8790


Christina Giarmatzi

Rethinking Causality
in Quantum Mechanics
Doctoral Thesis accepted by
The University of Queensland, Brisbane,
Australia

123



Author
Dr. Christina Giarmatzi
School of Mathematics and Physics
The University of Queensland
Brisbane, QLD, Australia

Supervisor
Prof. Andrew White
School of Mathematics and Physics
The University of Queensland
Brisbane, QLD, Australia

ISSN 2190-5053 ISSN 2190-5061 (electronic)
Springer Theses
ISBN 978-3-030-31929-8 ISBN 978-3-030-31930-4 (eBook)
https://doi.org/10.1007/978-3-030-31930-4

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-31930-4


To the two friends, who have sustained me
over the years, Zoi and Petros
To a beautiful soul, Stephen
And to a shining star, Ben



Supervisor’s Foreword

Discussions of cause and effect are as old as human history, with the concept
holding great sway from Greek philosophy through to Buddhism. In science,
consideration of causation has been fundamentally influential in fields ranging from
physics to epidemiology. Famously, the fundamental role of causality in quantum
mechanics was teased into clear view by the decades-long study of Bell’s
inequality; most recently, causal networks and discovery algorithms have had
important applications in machine learning, which is now interpolating every aspect
of our daily lives. So, gentle reader, you may be justified in wondering what more
can there be possibly to say on the topic?

In this thesis, Christina introduces and applies a new definition of causal process,
one which applies equally to classical and quantum theory, and indeed to any future
post-quantum theories. She introduces the theory-independent notion that the cause
and effect dependencies between events in a process can depend on other events
within the process. This original and striking insight has great power, providing a
new tool for consideration of quantum gravity, as well as having applications in
quantum information processing, including computation and communication.

Christina’s assessors remarked that her thesis “…is a substantial contribution to
the knowledge in the field of causality”, that it “demonstrates remarkable depth of
research and breadth of knowledge”, and that Christina has made “a contribution
over and above what one would normally expect from a Ph.D. student … [she] has
contributed broadly to multiple facets of the field of quantum causality, rather than
narrowly focusing on one or two problems.” Christina’s thesis is indeed all of these
things, and it is also eminently readable, endlessly fascinating, and a must for
anyone interested in foundational questions about the universe we live in.

So waste no more time on this foreword but turn the page and begin your
journey, you will find—as I did—that you are in for a treat.

Brisbane, Australia
May 2019

Prof. Andrew White
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Abstract

Causality has always believed to be a well-defined fundamental concept. However,
the late efforts for a theory of quantum gravity have suggested that causal structures
may not only be dynamical—as in general relativity—but also indefinite; the way a
quantum observable has an indefinite value prior to its measurement. Based on this
observation, it was proposed that a good way to study causality might be through a
probabilistic framework for correlations between events without an inherent
assumption of a definite causal structure. This way, we are free to formulate
causality in terms of correlations between events, and later we can see what happens
when the correlations are obtained from quantum events.

In this thesis, we developed such a general probabilistic framework, which is
independent of the theory that describes the events. We proposed a concept of
causality, taking into account that the causal order may be dynamical; an event may
affect the causal order of other events in its future. In that theory-independent
framework, we formulated causality in terms of constraints on the correlations. In the
case where the events are described by quantum mechanics, there is a special way to
describe correlations: through the process matrix. In that theory-dependent frame-
work, we found that causality is expressed in terms of simple conditions on the
process matrix. We observed the fascinating differences in which causality manifests
at the level of the two frameworks. We worked further on the latter one, to develop
mathematical tools to computationally and experimentally test situations incompat-
ible with a definite causal order. We also developed computational methods to obtain
restrictions of causality in terms of inequalities, for a given scenario. We finished our
study with a powerful and promising field of causality: quantum causal discovery.
Assuming that there is a well-defined and fixed causal order between a number of
events, causal discovery aims at inferring the causal structure through data from the
events. First, we performed two complementary experiments that rule out a class of
classical hidden-variable causal models for Bell correlations. Finally, abandoning the
idea that quantum events have a classical causal model, we use a quantum causal
modeling framework to write the first quantum causal discovery algorithm.
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Chapter 1
Introduction

1.1 What Happened to Causality

From the beginning of scientific reasoning the concept of causality has been a fun-
damental concept with which we understand the mechanisms of nature: A is the
cause of B, and there is nothing more to it. General relativity uses this concept to
establish causal structures: the set of possible causal relations between any possible
event localised in spacetime. It teaches us that causal structures can be dynamical
because massive objects change the causal structure around them, giving an overall
very satisfying theory on how the world works.

This clear understanding of causality, a profound pillar of physics, has recently
started to get blurry; causing a real stir on the idea that we had figured things out. It
mainly started with the effort to bring together two contradicting theories: general
relativity and quantum mechanics. Briefly, quantum mechanics is a probabilistic
theory that assumes a fixed causal structure, i.e. quantum mechanics is the theory to
describewhat small objects are doing on a fixed spacetime shaped by amassive object
that is not going anywhere near the realm of uncertainty. General relativity on the
other hand, is a deterministic theory that describes what is happening to objects that
are so massive that they shape space-time around them and consequently the motion
of other massive objects. One effort to bring these theories together was developed
by Hardy [1, 2] who proposed a scheme for quantum gravity, in 2008. His idea was
that such a scheme should be probabilistic in nature, like quantum mechanics, but
with a dynamical—not fixed—causal structure, like in general relativity. This led
to the idea that causal structures could be probabilistic and ‘indefinite’, in the same
sense that we cannot ascribe a value to an unobserved quantum variable.

Soon after Hardy’s proposal, interest began to grow in the causal structure of
quantum events and what can be done in terms of quantum computation. In 2009,
Chiribella et al. [3] proposed a novel architecture for quantum circuits beyond the
standard quantum circuit model. While in the latter quantum operations occur one
after the other in a fixed time-sequence, in their proposed architecture the wires that

© Springer Nature Switzerland AG 2019
C. Giarmatzi, Rethinking Causality in Quantum Mechanics, Springer Theses,
https://doi.org/10.1007/978-3-030-31930-4_1
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2 1 Introduction

A

B

+
Fig. 1.1 The quantum switch: a quantum circuit with movable wires connecting the operations.
Depending on the input state, the system can take different paths, leading to different orders for A
and B

connect the operations can be in superposition of different connections, allowing for
some sort of superposition of different quantum circuits.

Although this seems like a rather normal concept—a photon and a beamsplitter
is all it takes to create superposition of the path of the photon—its implications
were revolutionary. Superposition of the path of the photon is somehow understood;
but when along each path other events occur in a particular order, we are led to
superposition of the order of events. For two events, such a scheme can be represented
as shown in Fig. 1.1, which is the famous quantum switch [3].

At the same time, Chiribella, D’Ariano and Perinotti developed the framework
of quantum combs [4], which can describe situations like the quantum switch as a
map (which they call a supermap). The first result on this weird quantum circuit is
that it offers a computational advantage [5]: Imagine that you are promised that the
operations on A and B are unitaries that either commute or anticommute, and that
you have to guess which one it is by putting them in a quantum circuit and use a
single query. A reasoning that involves results on state discrimination proves that a
quantum circuit with a fixed causal order cannot discriminate between commuting
versus non-commuting unitaries with one use of the circuit. As it turns out, the
quantum switch can very well do that, with a single query.

Although this first computational advantage of the quantum switch promised that
many interesting things can happen using superposition of circuits, it also raised a
lot of questions: what does it mean to have a superposition of ‘A causes B’ and
‘B causes A’? Can A signal to B and B signal to A? What kind of causal structure
would allow that? Andwhat are themassive objects doing to create suchweird causal
structure?

Itwas clear that these cases cannot be treatedwith the traditional quantummechan-
ics framework inwhich causality is always definite; there needed to be one that allows
for quantum mechanics locally but also for a non-fixed causal structure.
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Although the first step was done by the framework of quantum combs, a more
general framework was developed by Oreshkov et al. [6], in 2012. It is a framework
for the study of correlations between quantum events without the assumption of a
predefined and definite causal order between them. Through these correlations, we
can then talk about their causal structure. Using this formalism, it was shown that it
is possible to obtain correlations between events that are incompatible with an under-
lying causal order. The environment of the events is represented by a mathematical
object called process matrix. A process matrix is the resource that allows the events
to be correlated in a particular way, compatible or not with a definite causal structure.
Most of the chapters of this thesis are using this formalism to explore the notion of
causality and build a few tools to study it (Chaps. 2–4).

The process matrix formalism has also served to build a framework for causal
modeling [7] and causal discovery [8] in the quantum regime. In the classical case,
Pearl [9], in 2000, developed the essential tools for causal modeling and causal
inference: how to discover the causal model from correlations. Note that a causal
model is a graph where nodes represent variables and directed arrows representing
causal influences. However, these tools do not apply in the quantum case as shown
with the famous example of a Bell-type experiment: Bell-correlations do not admit
a causal model that obeys the well-justified Bell’s assumptions. This means that
there is something wrong with the idea that quantum correlations should fit in the
classical causal model picture. Although the efforts continue to recover a classical
causal model for quantum correlations (Chap.5), this suggests that we may need to
abandon the idea of classical causal models for quantum events. This was done by
Costa and Shrapnel [7], in 2016, using the process matrix formalism (and within a
different framework, independently by Allen et al. [10] in the same year). This led to
the first causal discovery algorithm for arbitrary (but fixed) causal structures in the
quantum regime [8] (Chap.6).

The development of the process matrix formalism inspired a lot of research which
transformed into a field some call ‘quantum causality’. Some results—before, during
and after the submission of this thesis—involve computational advantages of indef-
inite causal order [11–17], a general study of causality for quantum events [18–26],
and even experimental realisations of the quantum switch [27–31]. The field is still
growing with the promise of novel routes on how to make sense of causality in the
quantum regime and more experimental realisations of indefinite causal structures.

1.2 Short Description of the Chapters

Different chapters of this thesis fit in a different way in this study of causality.
Chapter 2, based on [18], is devoted to the notion of causality itself from two different
perspectives. First, from a theory-independent perspective, we study how causality is
expressed between a number of local experiments, without assuming any particular
theory that describes the experiments. We formulate the conditions that causality
imposes on the possible correlations between the experiments, for n experiments.



4 1 Introduction

We take into account the possibility of dynamical causal order: the fact that one event
can influence the causal order of events in the future. Our second perspective is a
theory-dependent one: the experiments are described by standard quantummechanics
and we use the process matrix formalism, which we extended to n parties as well.
We found that, depending on whether we are at the theory-independent or theory-
dependent level, their classification in terms of causality changes. We study this
phenomenon and propose a classification of situations at both levels.

Chapter 3, based on [22, 31], is about developing a mathematical tool to use with
the process matrix formalism to be able to recognize situations incompatible with
causality. It is the analogue of an entanglement witness, but for causality, called
a causal witness. A causal witness corresponds to a set of operations that need
to be performed by the parties to prove that a process matrix—a description of the
situation—is causally nonseparable, i.e. incompatiblewith a causal order between the
experiments.We show that, in contrastwith an entanglementwitness, a causalwitness
can always be found, as it can be cast as a SemiDefinite Program (SDP)—a type of
optimization algorithm with linear constraints—which can be solved efficiently. We
present the SDPswe developed for the general bipartite case and a particular tripartite
case. We also found the optimal causal witness for the quantum switch, a causally
nonseparable process matrix with experimental realization. On a separate project,
we plan to build our own quantum switch. We present how we can tailor our SDPs to
match some experimental requirements, which we did for our own implementation,
for which we report its progress.

Chapter 4, based on [32], is about studying the polytope of correlations between a
number of parties that are compatible with causality: the causal polytope. This is the
analogue of the local polytope: the set of probabilities arising from measurements
on multipartite separable states; its facets correspond to Bell-type inequalities whose
violation by a given set of measurements verifies entanglement of the state (that
is also not Bell-local of course). We first prove that correlations of the outcomes
of a number of parties, given their settings, when they satisfy causality, form a
convex polytope. Given this result, the causal polytope for any number of parties and
settings and outcomes for them can be characterized by its vertices.We characterized
the simplest tripartite causal polytope: we obtained its facets and classified them in
families of causal inequalities. Finally, using a generalized ‘see-saw’ approach we
obtained process matrices and the operations that produce correlations that violate a
given family of inequalities.

In Chap.5, based on [33], we take a leap into the experimental world. We are
interested in a particular classical (hidden variable) causal model compatible with
correlations, arising from a Bell-type experiment. One classical (hidden variable)
causal model that can explain these correlations involves a causal influence from
the setting of one measurement station to the outcome of the other. We test, experi-
mentally, this causal model by performing two complementary experiments: in one
experiment we perform interventions on the output of one party, and observe the
changes in the statistics on the outcome of the other party. We found that the change
in the statistics was insufficient to explain the observed correlations, as calculated
in Ref. [34]. As proposed in the same reference, we then implement a measure-
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ment scheme different to the traditional—it involves three settings for each party, as
opposed to two. This is our second experiment and it allows for a violation of a new
inequality [34], that rules out the class of causal models we are interested in. This
method is device-independent (as opposed to the first one) which makes the claim
even stronger. The result is that we ruled out a class of hidden variable causal models
that explain the Bell correlations. In the next and final chapter, we give up the notion
of having a classical causal model for variables arising from quantum systems.

In Chap.6, based on [8], we use a causal modeling framework for quantum
events [7], which arose from the process matrix formalism, and use it to write an
algorithm for causal discovery (or causal inference). The causal models on which
we are focusing are those for parties that perform quantum operations on their local
laboratories that receive and send out quantum systems. We associate a causal link
from party A to party B, if there is a quantum channel from the output system of A
to the input system of B. Such a quantum channel appears in their process matrix,
and corresponds to a linear constraint on the process matrix. Hence, given the pro-
cess matrix for a number of parties, we subject it to all possible linear constraints
(causal arrows). The set of the linear constraints that are satisfied by the process
matrix defines a unique and minimal (there are no superfluous causal arrows) causal
model for the parties. We write an algorithm in MatLab that first detects if all the
relevant common causes are included in the process, a condition called Markovian-
ity. For a Markovian process, the algorithm outputs a unique and minimal causal
model; namely the causal relations and the corresponding mechanisms, represented
as quantum states and channels. Our algorithm provides a first step towards more
general methods for quantum causal discovery.
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Chapter 2
Causal and Causally Separable Processes

2.1 Back Story

This chapter is based on the long article in Ref. [1], which includes a video abstract
produced by yours truly. The initial objective of this project was to extend the work
presented in Ref. [2] into the multipartite case. That work was a mathematical frame-
work, called the process matrix framework, which is a way to expresss correlations
between a number of local experiments between an input and an output system, with-
out any reference to their causal order—not even assuming that one exists. Examples
were studied for the bipartite case, where they showed a scenario that yields correla-
tions between the experiments that would defy causality. In order to make the latter
claim, they defined what it means for two parties to obey causality.

Extending the mathematical framework for three parties was easy, but to define
what it means that three (and eventually n) parties obey causality, turned out to
be quite a task. Think of a situation respecting causality, for two parties. Surely a
rigorous notion of causality is not given yet, but following our intuition we can say:
only the past affects the future. Then we come up with these three cases: A before
B, B before A and A and B being causally independent. Then the most general case
would be a probabilistic mixture of these three cases. Indeed, a causal process—the
collection of joint probabilities of the local outcomes of the experiments, given their
settings—is one that can bewritten as a probabilisticmixture of processes compatible
with these three cases, and the probability weights are independent of all events.

Now think of three parties and imagine what would be the most general situation
compatible with our intuition about causality: all possible causal configurations in
which some parties are before others and some parties are causally independent. But
wait, this is not the only possible scenario. Imagine the parties A, B and C . It can be
that C is first, and depending on the state of his output system, the system could take
a route that goes first to A and then to B, or another route that goes to B first and then
to A. This is compatible with our intuition as a horizontally polarized photon would
go through a polarizing beam splitter and a vertical one would make a 90-degree
turn, and hence the photon would take a different spatial path. Keeping this in mind,
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what would a causal process look like, for our three parties? In the bipartite case a
causal process was a convexmixture of processes compatible with all possible causal
configurations for the two parties, with the probability weights being independent
of all relevant events. But for our three parties this is not true anymore. We cannot
assign an independent probability weight for the process to turn out to beC ≺ A ≺ B
(meaning, C to A to B) or C ≺ B ≺ A as that probability would depend on what
Charlie does. Right there, we observed the need for a definition of causality that
would be taken into account of such a ‘dynamical’ causal order. We could not rely on
the obvious suggestion from the bipartite case that a causal situation is one that can
be written as a mixture of scenarios compatible with a fixed causal order between
the events with independent probability weights, because those probability weights
have to be allowed to be dependent on the settings of some parties.

Hence, we searched for a new definition of causality, one that would allow the
settings of the parties to affect the causal order of their future parties. This is the core
result of this work. We saw how this definition manifests itself in the correlations
of joint probabilities of the local outcomes of the experiments, given their settings,
that is, the process framework, at a theory-independent level. We then applied the
definition of causality within the quantum process framework (where the local exper-
iments are described by quantum mechanics) and saw how it is expressed through
simple conditions on the process matrix, in the tripartite case.

Furthermore, we explored the interplay between the two different levels of inves-
tigation: general process framework and quantum process framework: level of prob-
abilities in theory-independent terms, vs level of process matrices where the local
theory is quantum mechanics. Within the quantum process framework, we saw that
a number of peculiar effects arise, which led to various kinds of definitions for dif-
ferent situations. For example, within that framework—in which we can describe
situations using a process matrix—causality imposes constraints on these matrices.
But it turns out that these constraints have a different effect than the constraint of
causality on the probabilities of the local outcomes of the parties. For example, there
can be a process matrix which does not obey the conditions of causality, however the
probabilities that are obtained by the parties, could agree with causality. Or, an even
more peculiar effect, a process matrix that agrees with causality—thus giving rise to
probabilities also agreeing with causality—can give rise to probabilities not agreeing
with causality, when the parties are supplied with extra entangled input systems.

Finally, we classified the different types of processes and process matrices that we
found, depending on the conditions under which they respect causality. The differ-
ences between our two levels of investigation—process versus process matrix—will
be clear later, but general idea is that compatibility with causal order differs whether
we talk about a process matrix—a description of the environment that connects
the parties (or their resource)—and the probabilities (process) that can arise from
a process matrix. Certainly a process matrix that obeys causality cannot give rise
to correlations that do not, but the opposite is not true: a process matrix that does
not obey causality may or may not be able to produce probabilities that do. Some-
thing similar happens with entangled states: they are not separable, yet they do not
necessarily yield probabilities that can violate any Bell-type inequalities.
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It is understood that the reader might be confused or skeptical about our approach.
Surely there must be an error in our definition of causality as its manifestations at dif-
ferent levels seem to disagree. But the problem lies elsewhere: our understanding is
that the peculiarities of the process matrix description arise in the very core assump-
tion of the process matrix framework: local quantum mechanics. Now the reader
might not be so surprised as many peculiar effects arise when quantum mechanics
is involved. We know that every property of a physical system cannot escape its
quantum character, hence it is not well-defined prior to and independently of its
measurement, and, it may be the case that the notion of causal order, although not
a property of a single physical system but rather their environment, may not have
escaped either.

2.2 Introduction

Dynamical and indefinite causal structures have recently attracted a lot of interest;
first from a foundational point of view and later for the possibility of enhanced
quantum information processing [2–27]. The foundational aspect concerns the long
standing search for a theory of quantumgravity,where the causal structure is expected
to be dynamical as in General Relativity but fundamentally probabilistic in nature,
while the interest from quantum information processing comes from the search for
novel quantum architectures beyond the standard circuit model. Regardless of the
motivation, operational approaches to causal order in a probabilistic setting have
provided a clearer view of causality as a classical and as a quantum concept, leaving
us with a promise for technological applications.

Recently, a framework was proposed in Ref. [2] to investigate the role of causal-
ity in an operational setting. The aim of that framework was to study the correla-
tions between local experiments without the assumption of a predefined causal order
between them. It was found out that a definite causal structure in which the experi-
ments are embedded imposes signaling constraints on the correlations between the
experiments. However, it was shown that when the local experiments are described
by quantum mechanics, their correlations could violate causality, as defined by the
signaling constraints. The latter can be thought as causal inequalities which can
be violated by certain scenarios. It was later showed that such correlations can be
obtained in a multipartite setting even if the local operations are classical [10], some-
thing impossible in the bipartite case [2].

Another example in which causal order is a not well-defined, is the quantum
switch [5]. It is an attempt to make a quantum circuit such that the causal order
between two events becomes ‘indefinite’ in the quantum sense. More precisely, local
quantum operations are applied in an order that depends on the value of a variable
prepared in a quantum superposition [5–7, 11, 18]. This approach allows one to
achieve certain tasks that are impossible if the quantum operations are applied in
a definite causal order. In contrast to the violation of a causal inequality, however,
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this conclusion depends on the assumed description of the local operations and is
therefore theory-dependent.

The process matrix framework and the quantum switch are examples in which
a theory or an implementation seem to be in conflict with causality. However, the
analysis of these effects has relied on semi-rigorous considerations about causality
or what it means for a scenario to be compatible with ‘definite causal order’. A
fully rigorous examination of these effects requires a clear notion of causality, which
so far, in a background-independent setting, has been lacking. To make this notion
general and applicable to any number of parties, turned out to be nontrivial. The
difficulty will appear shortly. From simple considerations of themultipartite case, we
understand that the causal order of a set of local experiments can be not only random
but also depend on the settings of some experiments. This is because the setting of
a given experiment can influence the order in which future experiments occur. This
motivates a notion of causality expressed as a rule that provides constraints on the
joint probabilities for the events in the local experiments but also allowing for the
possibility that different future causal configurations unfold dependingonpast events.
A theory of such dynamical causal order is essential not only for the understanding
the subject of indefinite causal order in quantummechanics or more general theories,
but also for the problem of inferring causal structure beyond the classic paradigm of
underlying deterministic variables and static causal relations [28].

Synopsis of the results: In this chapter, we develop rigorous theory-independent and
theory-dependent notions of causality in the process framework and characterize the
structure and relations between the corresponding classes of processes they define.
The next section (3) is devoted to the theory-independent perspective, which contains
our core result.We formalize the process framework in theory-independent terms and
propose a definition of causality which allows for the possibility of dynamical causal
order. We develop a number of concepts, such as multipartite signaling, reduced and
conditional processes, and derive necessary and sufficient conditions for a process to
be causal, which are expressed in the form of an iteratively defined canonical decom-
position of the probabilities in the process. This decomposition can be understood
as describing a causal ‘unraveling’ of the events in the experiment in a sequence,
showing that the proposed notion of causality yields the structure expected from
intuition. Apart from being logically non-trivial, this result has important concep-
tual implications—it presents us with an understanding of causal order as a random
function on random events rather than the ordering of underlying locations in which
events happen. This perspective is in the spirit of the idea of background indepen-
dence in general relativity, according to which there are no underlying locations,
but only events and the relations between them. In Sect. 2.4, we focus on the quan-
tum process framework, where we develop different theory-dependent notions of
causality, which in principle have analogues in more general process theories too.
Specifically, we investigate several possible generalizations of the bipartite notion
of causal separability, which was previously defined heuristically in the bipartite
case by postulating a particular form of the quantum process matrix [2]. We show
that this form can be understood as arising from the canonical decomposition of
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causal processes under the condition that each process in this decomposition is a
valid quantum process. We define the multipartite concept based on this principle.
We show that the sets of causal and causally separable processes are not equivalent
in the multipartite case, by giving an explicit example of a class of processes that are
causal but not causally separable. This example is based on the ‘quantum switch’
technique discussed earlier. We also show that, surprisingly, there exist causally sep-
arable (and hence causal) quantum processes that become non-causal if extended by
supplying the parties with an entangled input ancilla. This example of ‘activation
of non-causality’ is constructed based on a suitable modification of the non-causal
process matrix of Ref. [2]. This observation motivates the concepts of extensibly
causal and extensibly causally separable (ECS) processes, for which the respective
property remains invariant under extension with arbitrary input ancillas. We derive
a characterization of the class of ECS quantum processes in the tripartite case in
terms of simple conditions on the form of the process matrix, which generalize the
known form of bipartite causally separable process matrices. In the bipartite case,
causal separability and extensible causal separability are equivalent, hence the class
of ECS processes can be regarded as another possible multipartite generalization of
the previously known bipartite concept. Finally, we consider the class of processes
realizable by classically controlled quantum circuits, which we show is inside the
class of ECS processes. These, too, are equivalent to the causally separable pro-
cesses in the bipartite case and provide a possible multipartite generalization based
on a different principle.We conjecture that the processes that can be obtained by clas-
sically controlled quantum circuits are equivalent to the ECS processes, and hence
are described by process matrices obeying the simple conditions we have derived.
We provide arguments in favor of this conjecture based on analysis in the tripartite
case. In Sect. 2.5, we summarize our results and discuss future research directions.

2.3 The Process Framework

2.3.1 General Processes

Synopsis: In this section we lay down the main concepts of the process framework,
which are the same as when formulating a general probabilistic theory: setting, out-
come, event, operation, local experiment. The main scene is the following: we want
to describe a situation where a number of experiments take place, in some unknown
circumstances regarding their causal order. To formally describe this situation, we
define a process: the collection of probabilities of the local outcomes of the experi-
ments given their settings. This process will be our central tool to explore causality:
we will see how causality manifests itself through the constraints that imposes on
the process.
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The process framework introduced in Ref. [2] describes probabilities of outcomes
of local experiments associated with different parties, without assuming a global
causal order between the experiments, but only locally, for the events within each
experiment. The framework was developed for the case where the local experiments
are described by quantummechanics, under two specific assumptions: the joint prob-
abilities of the outcomes of the local experiments are non-contextual functions of
the operations of the parties, and that the local experiments can be extended to act
on ancillas prepared in any joint quantum state.

However, it is not necessary to restrict to any particular local theory that describes
the local experiments. We formulate a general process framework in operational
terms, without specifying the local theory, and therefore without any other addi-
tional assumptions that would restrict the parties’ correlations. The motivation is
to focus our attention purely at the effects of causality on correlations between the
experiments. Another motivation comes from the concept of causal inequality, which
formulates the bound of correlations compatible with an underlying causal structure
in theory-independent terms.

We start with some definitions. Each local experiment, say A is described by
two variables: a setting s A ∈ SA, and, for each such setting, A obtains an outcome
oA
s ∈ OA

s for that setting. The sets OA
s for each setting s A can be thought to be

identical as we can always extend them with fictitious outcomes that never occur,
i.e. OA

s ≡ OA. An operation is a collection of possible events {(s A, oA)}oA∈OA for a
fixed value of the setting s A ∈ SA (Fig. 2.1). The occurrence of a set of a experiments
{A, B, · · · } and the circumstances in which they take place are conditioned on some
variable wA,B,C,··· ∈ �A,B,C,··· which we will discuss later.

state 
preparation

MEASURE PREPARE

o o

outcome

setting

some 
source

input

output

Fig. 2.1 Local experiment: a typical local experiment would involve a measurement stage on the
input system and a preparation stage of the output system. An operation is the collection of the
events defined for every setting and the collection of possible outcomes for that setting
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Definition 2.3.1 (Process) Mathematically, we define a process W A,B,··· for a set
of local experiments (or parties) S = {A, B, · · · } as the collection of conditional
probabilities

W A,B,··· ≡ {P(oA, oB, ...|s A, sB, ..., wA,B,···)}, (2.1)

oX ∈ OX , sX ∈ SX , X ∈ S,

for a given value of wA,B,··· ∈ �A,B,···.

Definition 2.3.2 (Trivial process) For the purposes of expressing more succinctly
certain conditions later, it is convenient to allow the set of local experiments S =
{A, B, · · · } in the definition to be the empty set {} as a special case. In that case, the
corresponding process will be referred to as the trivial process. We define it to consist
of a single probability—that for the trivial outcome given the trivial setting—which
is equal to 1.

Note that while in this chapter the word ‘process’ has a specific meaning, in other
chapters it will be used to refer to a general physical process.

A theory in the process framework is specified by listing the different types of
input and output systems, all possible settings and outcomes, all possible variables
wA,B,··· for which we have an occurrence of the experiments {A, B, · · · } and the
corresponding process (2.1). The variables sX , oX , w{A,B,··· } are identified with their
equivalence classes with regard to the probabilities (2.1)—meaning that give rise to
the same probabilities. This is also true for the operational probabilistic theories in
the circuit framework [29–32].

But what are these variables supposed to describe in practice? In Refs. [16, 17],
it was argued that there are two main ideas that underlie the concept of operation
in the standard circuit framework for operational probabilistic theories [29–32]. The
first one, termed as closed-box assumption, is the idea that the input and output
systems of an operation are the only means of information exchange responsible for
the correlations between the outcomes of that operation and the outcomes of other
operations in the global experiment. The second idea, termed as no-post-selection
criterion, which makes sense assuming a predefined notion of temporal ordering as
in the standard circuit formulation, is that the variable that defines an operation, or
the setting sX , can be known with certainty before the time of interaction with the
input system unconditionally on any events in the future.

Since no predefined global time is assumed in our picture, the latter condition
will be imagined to hold only with respect to the local temporal sequence of events
observed by each experimenter. Furthermore,wewill assume that the variablewA,B,···
that defines the global setup in which the individual experiments take place is also
obtainedwithout post-selection.We canmake sense of this idea by imagining that the
variable is associated with an event that fits within each of the local temporal frames
of the experimenters and is such that it occurs before any of them receives the input
system. We will call processes that describe experiments of this kind pre-selected
processes. For a generalization that admits post-selection, see Ref. [16].
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For the rest of the chapter, we will consider only pre-selected processes and will
refer to them as processes, unless otherwise stated. We will also drop the explicit
specification of the variablew{A,B,··· } on which the global experiment is conditioned.
Therefore, we simply write W A,B,··· ≡ {p(oA, oB, ...|s A, sB, ...)} keeping in mind
that every process describes circumstances defined by such a variable and hence all
probabilities we consider are implicitly conditional on such a variable.

2.3.2 Causal Processes

Synopsis: Causality is well defined in the circuit framework through the strict partial
order (SPO) that it defines. In our picture, for a set of local experiments, we have
no circuit notion, hence nor SPO, to help us define causality. Nonetheless we can
ask: is a given process compatible with the existence of a SPO with respect to which
causality is satisfied? We formulate this precisely. We come across two difficulties:
first, that the SPO may be random—probabilistic mixtures of SPOs have to be taken
into consideration; second, the setting of an experiment could be correlated with the
SPOof this experiment and future ones. Therefore, causalitymust be compatiblewith
a probabilistic SPO and impose restrictions on the settings and the SPO dependence.
Considering these, we provide a definition of a process that respects causality: a
causal process.

In the circuit framework for operational probabilistic theories, causality is defined
as the property that the probability distribution over the outcomes of a given operation
in a circuit does not depend on what operations take place in the absolute future
or absolute elsewhere [36] of that operation as defined by the strict partial order
(SPO) of the circuit composition [30, 31]. More specifically, every circuit describes
a set of operations taking place at the vertices of a Directed Acyclic Graph (DAG),
whose directed edges (the circuit ‘wires’) correspond to systems that go from one
operation to another. Such a graph defines a SPO on the operations in a circuit (a
precise definition of SPO is given below)—one operation is in the absolute past of
another (equivalently, the latter is in the absolute future of the former) if there exists
a directed path from the former to the latter through the graph. If there is no directed
path connecting two operations, we say that one is the absolute elsewhere of the
other.

In our picture, where we have a set of local experiments, we can associate each
experiment with a vertex of such a DAG. Then the property of causality says that
the probabilities for the outcomes of local experiments that are in the causal past or
causal elsewhere of a given local experiment cannot depend on the setting of that
experiment. A circuit theory that obeys this condition, such as standard quantum
theory, is called causal, and for such a theory the SPO defined by the circuit com-
position can be interpreted as causal order [30, 31]. This interpretation corresponds
to the intuitive idea that, if the setting of a local experiment is regarded as up to the
‘free choice’ of an experimenter, then any correlations between that setting and other
variables must indicate a causal influence of the setting on those variables. From this
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perspective, causality can be understood as the condition that a variable can influence
only variables in its immediate location or in its absolute future.

In the process framework, we do not assume the existence of a given circuit in
which the local experiments are embedded. Thus, there is no natural SPOwith respect
to which to define causality. Nevertheless, we may ask whether the probabilities
described by a given process are compatible with the existence of a SPOwith respect
to which causality is satisfied. How to formulate this precisely is the main result of
this section. However, it is not immediately clear because the process framework can
describe situations in which the SPO may be random. For instance, it can describe
the correlations between local experiments that can be embedded in different circuits
according to some probability distribution. Clearly, if the SPO between the local
experiments is random, it must be the case that conditionally on that SPO taking any
particular value, the probabilities of the outcomes of the parties given their settings
must obey the above notion of causality. This condition, however, is not sufficient to
capture the idea of causality.

For example, consider the local experiments of two parties, Alice and Bob, which
are embedded at random in one of two possible causal circuits where they occur in
different orders. The probabilities for all events and the specific circuit could be such
that, conditionally on any particular circuit being realized, the joint probabilities of
the outcomes of the parties given their settings obey the above notion of causality,
but nevertheless the setting of Alice could be correlated with the circuit in which her
experiment is embedded, and thereby with the SPO on the two local experiments.
Intuitively, such a situation should be in conflict with causality, because if Alice’s
setting couldnot influence events that occur in the past, it shouldnot influencewhether
or not Bob performs an operation in the past. (Note that, in principle, Alice could
change whether or not Bob’s operation is in her past simply by waiting. However
we do not allow this because we assume that the parties have no access to any
global time reference frame, except through the systems they receive in their labs.)
In the circuit notion of causality, the past is defined assuming a fixed circuit. In
the process framework, where no fixed circuit is assumed, we cannot use such a
notion of causality to define that Alice’s settings should be independent from past
events—there is no circuit with which to define past.

This indicates that we need a more general notion of causality that imposes con-
straints on how the SPO of the local experiments can depend on the parties’ settings.
A simple possibility is to require that the SPO on the local experiments must be inde-
pendent of the parties’ setting. This condition, however, is too restrictive, because,
compatibly with the idea of causality, we can conceive of scenarios where the setting
of a given party influences the order in which other parties perform their experiments
in that party’s absolute future. Thus, a more sophisticated definition of causality is
needed for the process framework. We next develop such a definition.

First, let us review the properties of SPO and introduce some terminology. A SPO
on a nonempty set of local elements S = {A, B,C, · · · } is a binary relation≺which
satisfies the following conditions: (1) irreflexivity—not A ≺ A; (2) transitivity—if
A ≺ B and B ≺ C , then A ≺ C ; (3) anti-symmetry—if A ≺ B, then not B ≺ A.
When two local experiments A and B satisfy A ≺ B (equivalently, B � A), we will
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say that A is in the absolute past of B, or that B is in the absolute future of A
[36]. It will be convenient to introduce the notation A � B (equivalently, B � A),
which means A �=B and not A ≺ B, that is, A and B are different and A is not in
the absolute past of B (equivalently, B is not in the absolute future of A). We will
also introduce the notation A �� B, which means A � B and A � B, that is, A and
B are different and A is neither in the absolute past nor in the absolute future of B
(same holds for B with respect to A). In the case when A �� B, we will say that A
and B are absolutely independent, or that A is in the absolute elsewhere [36] of B
(and similarly, B is in the absolute elsewhere of A).

The SPO on a set S = {A, B, · · · } is described by the list of respective relations
for each such pair, which we will denote by κ(A, B, · · · ). As discussed above, the
SPOκ(A, B, · · · ) in terms ofwhich causalitywould be defined canmost generally be
random and correlated with the events in these experiments. The notion of causality
would impose constraints on the possible correlations. We want these constraints to
formalize the following intuition about causality:

The choice of setting in a local experiment cannot affect the occurrence of events
in the absolute past or absolute elsewhere of that experiment, nor the SPO on such
events and the experiment in question.

We can think that the variables that describe the events in the absolute past and
absolute elsewhere of that experiment, and theSPOof these events and the experiment
in question, have already been taken particular values before the occurrence of that
experiment.

Since a process is defined as W A,B,··· ≡ {P(oA, oB, ...|s A, sB, ..., wA,B,···)} and
does not assume the existence of probabilities for the settings, we will formulate the
above constraint at the level of probabilities conditional on the settings. We define
this as follows.

Definition 2.3.3 (Causal process)AprocessW A,B,··· ≡{p(oA, oB, · · · |s A, sB, · · · )}
for a nonempty set of local experiments S = {A, B, · · · } is called causal if and only
if there exists a probability distribution

p(κ(A, B, · · · ), oA, oB, · · · |s A, sB, · · · ),
∑

κ(A,B,··· )
p(κ(A, B, · · · ), oA, oB, · · · |s A, sB, · · · ) = p(oA, oB, · · · |s A, sB, · · · ),

(2.2)

where the random variable κ(A, B, · · · ) takes values in the possible SPOs on
S = {A, B, · · · }, such that for every local experiment, say A, every subset X =
{X,Y, · · · } of the rest of the local experiments, and every SPO κ(A, X,Y, · · · ) ≡
κ(A,X ) on the local experiment in question and that subset, we have

p(κ(A,X ), A � X , oX |s A, sB, · · · ) = p(κ(A,X ), A � X , oX |sB, · · · ). (2.3)
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Here oX denotes collectively the outcomes of all local experiments inX , and A � X
denotes the condition that all these local experiments are in the causal past or causal
elsewhere of A.

Note. A monopartite process is trivially causal.

For a processW A,B,··· that is causal, the binary relation≺ of the SPO κ(A, B, · · · )
can be interpreted as causal order. In that case, we will use the terms ‘causal
past’, ‘causal future’, ‘causal elsewhere’ and ‘causally independent’ in the place
of ‘absolute past’, ‘absolute future’, ‘absolute elsewhere’ and ‘absolutely indepen-
dent’, respectively. We will also refer to the list of pairwise relations κ(A, B, · · · ) as
the causal configuration of the local experiments.

Our goal next is to understand the structure of causal processes that arises from this
definition and show that it corresponds exactly to what one expects from intuition.

2.3.3 Fixed-Order Causal Processes, (No) Signaling,
Reduced and Conditional Processes

Synopsis: In this section we provide several definitions. A fixed-order causal process
is a causal process that is compatible with a single SPO between the parties. We
define bipartite and multipartite signaling and we introduce two types of processes:
considering two complementary subsets of partiesA and B, with B � A, a reduced
process forA is a process defined only for that subset, independent of what happens
in B, denoted asWA; a conditional process is a collection of processes for the set B
conditioned on each event in A, denoted as WB|A. The relation between the whole
process for the unification of the sets and the reduced and conditional processes is
then written as: WA,B ≡ WB|A ◦ WA, where the product ◦ denotes multiplication
of the respective probabilities of these processes, when defined, for the same value
of the event inA (Fig. 2.2). Before we consider the case of general causal processes,
it will be instructive to investigate the special case of causal processes for which the
causal configuration of the local experiments is fixed.Aswewill show, the constraints
on such processes can be expressed via the concept of signaling, which we develop
below. We also introduce several related concepts that will be of use later.

Definition 2.3.4 (Fixed-order causal process)AprocessW A,B,··· ≡ {p(oA, oB, · · · |
s A, sB, · · · )} is called fixed-order causal if it is compatiblewith a deterministic causal
configuration, i.e., if it satisfies condition (2.3) for a SPO κ(A, B, · · · ) that takes a
particular value κ(A, B, · · · ) = κ∗(A, B, · · · ) with unit probability for all possible
settings of the parties:

p(κ(A, B, · · · ), oA, oB, · · · |s A, sB, · · · ) = 0,

iff κ(A, B, · · · ) �= κ∗(A, B, · · · ),
∀s A ∈ SA,∀sB ∈ SB, · · · ,∀oA ∈ OA,∀oB ∈ OB, · · · . (2.4)
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Reduced process WA

Conditional process
event in 

WB|A

∀ A

Fig. 2.2 Reduced and conditional process: the arrows represent an example of possible singling
between the parties, to indicate that B � A

Definition 2.3.5 (Bipartite signaling) We say that there is no signaling from A to
B in a bipartite process W A,B if and only if the probabilities of the process satisfy

p(oB |sB, s A) ≡
∑

oA∈OA

p(oA, oB |sB, s A) = p(oB |sB), (2.5)

∀s A ∈ SA, sB ∈ SB, oB ∈ OB,

i.e., the marginal probabilities for the outcomes of B are independent of the setting
of A for any possible setting of B. Equivalently, we say that there is signaling from
A to B if and only if this condition is not satisfied.

For a fixed-order causal processW A,B , where one of the relations A ≺ B, B ≺ A,
or A �� B holds with unit probability for all settings of the parties, we can see that
signaling is possible from one experiment to the other only if the former is in the
causal past of the latter, which agrees with the notion of causality in the circuit
framework [30, 31].

In the case of more than two local experiments, the relevant generalization of the
above notion of signaling may not be immediately obvious. Notice that if a given
bipartite processW A,B involves no signaling between A and B, such a process is in
principle compatible with the causal configuration A �� B (in fact, it is compatible
with any causal configuration of the two parties). However, in the case of processes
for more than two local experiments, even if there is lack of signaling between any
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pair of experiments for every possible settings of the rest of the experiments, the
process may not be compatible with a causal configuration in which all experiments
are causally independent.

What follows is an example of the subtleties of themultipartite signaling:Consider
three local experiments performed by Alice, Bob, and Charlie, where each party’s
input and output systems are classical bits, and each party is allowed to perform
any classical stochastic operation from the input bit to the output bit. Let the experi-
ments of Bob and Charlie be causally independent, and let Alice’s experiment be in
the absolute future of Bob’s experiment, but in the absolute elsewhere of Charlie’s
experiment (i.e., the causal configuration of the three parties is [B ≺ A, A �� C ,
B �� C]). Imagine that Charlie receives his input system in one of the two possible
states 0 or 1 with probability 1/2, and depending on that state, Alice and Bob are in
one of the following two scenarios. In the first scenario (say, when Charlie receives
0), Bob receives a random bit as an input system, his output bit is sent unaltered into
the input system of Alice, and Alice’s output bit is discarded. In the second scenario
(when Charlie receives 1), Bob again receives a random input bit, but this time his
output bit is flipped before sending it into Alice’s input, and Alice’s output bit is
again discarded. In both cases, the output system of Charlie is discarded. Clearly, the
described situation can be realized in agreement with a fixed causal configuration
of the parties—all we need to do is supply Bob with a random bit and correlate the
channel from Bob to Alice with the input system of Charlie, discarding the outcomes
of Alice and Charlie. The mechanism realizing this is sketched in Fig. 2.3a.

Note that the tripartite process corresponding to this scenario would involve no
signaling from Bob to Alice in spite of the existence of a channel from Bob to Alice.
This is the case irrespectively of what operation Charlie performs. Obviously, there
can be no signaling from Alice to Bob either, since Alice operates in the future of
Bob, nor can there be signaling between Alice and Charlie, or between Bob and

(a) (b) (c)

Fig. 2.3 Subtleties of multipartite signaling: certain types of multipatite signaling correlations
do not involve bipartite signaling and do not imply the existence of a causal connection between
any particular pairs of channels. The example discussed in the text could arise from any of the
mechanisms sketched here [1]
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Charlie, since Charlie is causally independent of both Alice and Bob. Thus, we have
no signaling between any pair of parties, no matter what the setting of the third party
is. Yet, the possible correlations between the parties cannot be realized if all parties
are causally independent because if Alice and Charlie measure their input bits and
collect the results of their measurements, they can infer the bit sent out by Bob,
which is impossible if all parties are causally independent. We might say that in
this case we have signaling from Bob to Alice and Charlie together. But intuitively,
given the described scenario, this signaling should be from Bob to Alice only, since
there is no channel connecting Bob’s output system to Charlie’s input. However, the
latter conclusion is based on knowledge about the mechanism by means of which
the correlations are established, or about the causal configuration of the parties, and
does not follow solely from the correlations between them. Indeed, the tripartite joint
probabilities for the outlined scenario are symmetric with respect to interchanging
the roles ofAlice andCharlie, and thus they could arise from a differentmechanism in
a situation where Alice is causally independent of both Bob and Charlie, and Charlie
is in the causal future of Bob (Fig. 2.3b). They could also arise from a channel
from Bob to both Alice and Charlie (Fig. 2.3c) which transforms Bob’s output bit
into either correlated or anti-correlated random input bits for Alice and Charlie. We
therefore see that, at the level of the joint probabilities for the parties’ experiments,
there is no way of distinguishing between these different mechanism of information
transmission, and hence no way of giving a definition of signaling among a proper
subset of the parties that unambiguously captures the existence of such a mechanism.
We can, however, give an unambiguous definition of lack of signaling between two
complementary subsets of the parties (Fig. 2.4), as well as an associated notion of
multipartite signaling, generalizing the bipartite case.

Fig. 2.4 Multipartite
signaling: pictorial
representation of the
definition above

A

B

{(ok+1, sk+1), · · · , (on, sn)}

{(o1, s1), · · · , (ok, sk)}

no signaling 
from       toA B
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Definition 2.3.6 (Multipartite signaling) Consider an n-partite process W1,··· ,n for
a set of local experiments S = {1, · · · , n}, n = 0, 1, · · · . Let A = {1, · · · , k} and
B = {k + 1, · · · , n}, 0 ≤ k ≤ n, be two complementary subsets of the experiments,
A ∪ B = S, A ∩ B = {} (for simplicity, we take them to be the first k and the next
n − k experiments, which can always be ensured by relabeling). We say that there is
no signaling from the subsetA to the complementary subsetB in the processW1,··· ,n
if and only if

p(ok+1, · · · , on|s1, · · · , sn) ≡ p(ok+1, · · · , on|sk+1, · · · , sn), (2.6)

∀s j ∈ S j , o j ∈ O j , j = 1, · · · , n.

Equivalently, we say that there is signaling from (1 or · · · or k) to (k + 1 or · · · or
n) if and only if this condition is not satisfied.

Note that this definition only says whether there is signaling from one or more
local experiments from a given subset to one or more local experiments from the
complementary subset, but in the general case it does not identify pairs of experiments
between which there is signaling. In the case of two experiments, the definition
reduces to the notion of bipartite signaling defined earlier.

Definition 2.3.7 (Non-signaling process) A processW1,··· ,n for a set of local exper-
iments S = {1, · · · , n}, n = 0, 1, · · · , is called non-signaling if and only if there is
no signaling from A to B for any pair of complementary subsets A and B of S.

From the definition of causal process, one easily obtains the following rela-
tion between the existence of multipartite signaling among the local experiments
described by a given process and the causal configuration of these experiments.

Proposition 2.3.1 In an n-partite fixed-order process W1,··· ,n, n ≥ 1, compatible
with a deterministic causal configuration κ∗(1, · · · , n), there can be signaling from
(1 or · · · or k) to (k + 1 or · · · or n), only if at least one of {1, · · · , k} is in the
absolute past of at least one of {k + 1, · · · , n} according to κ∗(1, · · · , n).

It turns out that we can formulate necessary and sufficient conditions for a process
to be fixed-order causal, which are expressed entirely in terms of the condition stated
in Proposition 2.3.1 applied to different subsets of the experiments. To formulate the
conditions precisely, we will need to introduce the concept of reduced process.

Definition 2.3.8 (Reduced process) Consider an n-partite process W1,··· ,n , n ≥ 0,
for a set of local experiments S = {1, · · · n}. Let A = {1, · · · , k} and B = {k +
1, · · · , n}, 0 ≤ k < n, be two complementary subsets of the experiments (specified
up to relabeling), such that there is no signaling from B to A. This means that
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p(o1, · · · , ok |s1, · · · , sn) = p(o1, · · · , ok |s1, · · · , sk), (2.7)

∀s j ∈ S j , o j ∈ O j , j = 1, · · · n,

The collection of these probabilities will be called reduced process for A and will
be denoted by WA ≡ W1,··· ,k .

Note that if amultipartite process is a valid pre-selected process, any of its reduced
processes is also a valid pre-selected process because it is defined conditionally on the
same pre-selected event. Note also that a general multipartite process need not admit
any reduced processes apart from the trivial process and itself, since it may involve
signaling from every proper subset of the local experiments to its complementary
subset.

Before we state the conditions for a process to be fixed-order causal, we introduce
another concept that will be needed later.

Definition 2.3.9 (Conditional process) Consider an n-partite process W1,··· ,n , n ≥
0, for a set of local experiments S = {1, · · · , n}. Let A = {1, · · · , k} and B =
{k + 1, · · · , n}, 0 ≤ k < n, be two complementary subsets of the experiments (spec-
ified up to relabeling), such that there is no signaling from B toA (and hence we can
define a reducedprocessWA ≡ W1,··· ,k). For eachfixed event (s1, o1, · · · sk, ok) inA
forwhich p(o1, · · · , ok |s1, · · · , sk) �= 0, consider the collection of conditional prob-
abilities {p(ok+1, · · · , on|sk+1, · · · , sn, s1, o1, · · · , sk, ok)}. These can be thought
of as an (n − k)-partite process for B dependent on the event (s1, o1, · · · , sk, ok) in
A. The collection of these processes for all values of (s1, o1, · · · , sk, ok) for which
p(o1, · · · , ok |s1, · · · , sk) �= 0 will be called conditional process and will be denoted
byWB|A ≡ Wk+1,··· ,n|1,··· ,k . The relation between the whole process and the reduced
and conditional processes can be written in the compact form

WA,B ≡ W1,··· ,n = Wk+1,··· ,n|1,··· ,k ◦ W1,··· ,k

≡ WB|A ◦ WA, (2.8)

where the product ◦ betweenWB|A andWA denotes multiplication of the respective
probabilities of these processes, when defined, for the same value of the event in A:

p(o1, · · · , on|s1, · · · , sn) = p(ok+1, · · · , on|sk+1, · · · , sn, s1, o1, · · · , sk, ok)

p(o1, · · · , ok |s1, · · · , sk), (2.9)

for p(o1, · · · , ok |s1, · · · , sk) �= 0, and

p(o1, · · · , on|s1, · · · , sn) = 0, (2.10)

for p(o1, · · · , ok |s1, · · · , sk) = 0.
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Proposition 2.3.2 A processW1,··· ,n for a set of local experiments S = {1, · · · , n},
n ≥ 1, is compatible with a deterministic causal configuration κ∗(1, · · · , n) of these
experiments (and is thereby fixed-order causal) if and only if, for the assumed causal
configuration, Proposition 2.3.1 holds for the full process and all of its reduced pro-
cesses for all bipartitions of the local experiments into two complementary subsets.
The proof is given in the Appendix of the related paper [1].

We next turn to general causal processes, beginning with the bipartite case.

2.3.4 Bipartite Causal Processes

Synopsis: We develop the necessary and sufficient condition for a bipartite process
to be causal.

Consider a process W A,B describing the local experiments of two parties, Alice
and Bob. If the process is causal, there exist probabilities p(A ≺ B|s A, sB), p(B ≺
A|s A, sB), p(A �� B|s A, sB), with p(A ≺ B|s A, sB) + p(B ≺ A|s A, sB) +
p(A �� B|s A, sB) = 1.We can therefore write the joint probabilities of the process
in the form

p(oA, oB |s A, sB) = p(A ≺ B|s A, sB) p(oA, oB |s A, sB, A ≺ B)

+ p(B ≺ A|s A, sB) p(oA, oB |s A, sB, B ≺ A)

+ p(A �� B|s A, sB) p(oA, oB |s A, sB, A �� B),

(2.11)

where each of the probability distributions p(oA, oB |s A, sB, A ≺ B), p(oA, oB |
s A, sB, B ≺ A), and p(oA, oB |s A, sB, A �� B), is defined assuming that p(A ≺
B|s A, sB) �= 0, p(B ≺ A|s A, sB) �= 0, and p(A �� B|s A, sB) �= 0, respectively,
otherwise that term is absent from the expansion. The definition of causality (2.3)
implies that p(A ≺ B|s A, sB) = p(A ≺ B|s A), p(B ≺ A|s A, sB) = p(B ≺ A|sB),
p(A �� B|s A, sB) = p(A �� B). Since the sum of these probabilities must be
unity, we obtain p(A ≺ B|s A) = p(A ≺ B), p(B ≺ A|sB) = p(B ≺ A), i.e., the
causal configuration of the local experiments is independent of the parties’ settings.
Thus, the probabilities of a bipartite causal process W A,B

c have the form

p(oA, oB |s A, sB) = p(A ≺ B) p(oA, oB |s A, sB, A ≺ B)

+ p(B ≺ A) p(oA, oB |s A, sB, B ≺ A)

+ p(A �� B) p(oA, oB |s A, sB, A �� B),

(2.12)

where the probability distributions
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p(oA, oB |s A, sB, A ≺ B) ≡ p(A ≺ B, oA, oB |s A, sB)/p(A ≺ B),

p(oA, oB |s A, sB, B ≺ A) ≡ p(B ≺ A, oA, oB |s A, sB)/p(B ≺ A),

p(oA, oB |s A, sB, A �� B) ≡ p(A �� B, oA, oB |s A, sB)/p(A �� B),

(2.13)

whenever defined, describe processes, which we will denote by W A≺B , W B≺A,
and W A��B , respectively. (Note that we can imagine that the causal configura-
tion κ(A, B) taking values A ≺ B, B ≺ A, or A �� B, is associated with an event
in the past of both A and B, i.e., the processes W A≺B , W B≺A, and W A��B , can be
thought of as proper pre-selected processes.) The assumption of causality imposes
conditions on these processes too. Specifically, it can be seen that each of them
must obey a no-signaling constraint compatible with the concrete causal config-
uration it is conditioned on: the first one must involve no signaling from Bob to
Alice, p(oA|s A, sB, A ≺ B) = p(oA|s A, A ≺ B); the second one must involve no
signaling from Alice to Bob, p(oB |s A, sB, B ≺ A) = p(oB |sB, B ≺ A); and the
third one must involve no signaling in either direction, p(oA|s A, sB, A �� B) =
p(oA|s A, A �� B), p(oB |s A, sB, A �� B) = p(oB |sB, A �� B), i.e., these are
fixed-order causal processes. In a compact form, we can write

W A,B
c = p(A ≺ B) W A≺B + p(B ≺ A) W B≺A + p(A �� B) W A��B,

(2.14)

i.e., a bipartite causal process has the form of a probabilistic mixture of processes that
are compatible with the different mutually exclusive causal configurations of the par-
ties (and correspondingly involve only one-way signaling in the respective direction,
or no signaling). This form is not only necessary but also sufficient for a process to be
causal. This is because the form (2.14) gives explicitly a joint probability distribution
p(κ(A, B), oA, oB |s A, sB) = p(κ(A, B)) p(oA, oB |s A, sB,κ(A, B)) that obeys the
condition for causality (2.3) when p(oA, oB |s A, sB,κ(A, B)) obey the no-signaling
constraints compatible with κ(A, B) (that is, is independent of the settings of one
party in our bipartite case). Indeed, we have

p(A � B, oB |s A, sB ) = p(B ≺ A, oB |s A, sB ) + p(A �� B, oB |s A, sB )

= p(B ≺ A) p(oB |s A, sB , B ≺ A) + p(A �� B) p(oB |s A, sB , A �� B)

= p(B ≺ A) p(oB |sB , B ≺ A) + p(A �� B) p(oB |sB , A �� B) = p(A � B, oB |sB ),

(2.15)
and similarly p(B � A, oA|s A, sB) = p(B � A, oA|s A).

Since the non-signaling probabilities p(oA, oB |s A, sB, A �� B) are compatible
with the one-way signaling constraints for the cases A ≺ B or B ≺ A, we can also
write the probabilities (2.12) in the non-unique form

p(oA, oB |s A, sB) = p(wA�B) p(oA, oB |s A, sB , wA�B) + p(wB�A) p(oA, oB |s A, sB , wB�A),

(2.16)
where wA�B and wB�A are two mutually exclusive variables for which the experi-
ments ofAlice andBob respect the relations A � B and B � A, respectively,with the
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probabilities of these variables satisfying p(wA�B) + p(wB�A) = 1. In a compact
form, this can be written

W A,B
c = q W A�B + (1 − q) W B�A, 0 ≤ q ≤ 1, (2.17)

where WY�X is a process that involves no signaling from Y to X , i.e.,

WY�X = WY |X ◦ W X . (2.18)

The constraint (2.17) (equivalently, (2.16)) provides a means of testing whether
a given bipartite process theory is compatible with causal order. For every fixed
number of settings andfixednumber of outcomes for each party, the joint probabilities
satisfying Eq. (2.16) form a convex polytope, which is the convex hull of the polytope
of probabilities that involve no signaling from Alice to Bob, and the polytope of
probabilities that involve no signaling from Bob to Alice, called the causal polytope.
The bipartite causal polytope was studied in Ref. [23]. In Chap. 4 we will discuss
about the tripartite causal polytope [24].

2.3.5 Form of Tripartite and n-Partite Causal Processes

Synopsis: We formulate a proposition, where we apply the definition of causality
to a set of causally ordered parties. As a consequence we make the claim that the
probability for a given set of local experiments to be first is independent of the settings
of all parties. From this claim we derive the form of a tripartite causal process:
it is a mixture of processes compatible with one party being first (three terms),
with two parties being first (three terms) and one last process where all parties are
first; or causally independent. The intuition behind these terms (processes) is that
they represent the only situations for which we can assign independent probability
weights—their probability to occur is independent of all parties’ settings. For these
three families of terms (one, two and three parties are first) we derive a necessary and
sufficient form for the (causal) process which have a compact and intuitive form. For
example, in the case where C is first, it isW [C]I = W A,B|C

c ◦ WC , whereW A,B|C
c is

the conditional causal process for A and B, given the events of C ,WC is the reduced
process for C , and the superscript [C]I denotes that party C is first. We then move
to the multipartite case, where we generalize our results about the tripartite case,
and provide a definition for multipartite causal processes. In both cases, we briefly
discuss that for a fixed number of settings and outcomes of the parties, the causal
processes form a polytope whose facets define causal inequalities.

In the case ofmore than twoparties, causal processes neednot have the simple form
of probabilisticmixtures of fixed-order causal processeswith probabilityweights that
are independent of the parties’ settings. Such processes are of course causal, but there
are more general cases for three parties. There is the possibility that the setting of
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Fig. 2.5 Charlie may change the causal order: in a causal setup where Charlie performs his
experiment in the causal past of both Alice and Bob, the causal configuration of Alice and Bob may
depend on the setting of Charlie [1]

a party in the past, can affect the causal order of the parties in the future. This is
consistent with the notion of causality that we have developed—that the setting of a
party cannot affect the causal order of itself and parties in the causal past and causal
elsewhere—and consistent with our daily intuition of a dynamical causal order.

For a more concrete example, imagine a tripartite experiment, where the parties
operate on some internal degree of freedom of a particle that enters their laboratory.
Note that the internal degrees of freedom of the particle have to be the only means of
exchange of information between the parties. Therefore, the times of input and output
of the particle in each laboratory should not be used as an exchange of information.
For example, the parties may not be allowed to share any common time reference
frame with the rest of the experiment and to perform their operation during a fixed
time interval with a stopwatch. In such a case, if Charlie receives a particle first,
his operation on the particle could affect the order in which Alice and Bob receive
their particles afterwords. For example, conditionally on the outcome of Charlie’s
experiment, he may send out a particle that is in such a state that takes a different
trajectory outside his laboratory than it would have taken had he obtained a different
outcome and sent out the particle in a different state. This can result in the different
scenarios depicted in Fig. 2.5. By construction, the outlined setup is compatible with
the condition that the setting of each local experiment can be chosen independently
of events in the causal past and causal elsewhere of that experiment, as well as of
the causal configuration of such events and the experiment in question, so it would
be associated with a valid causal process.

Clearly, the dependence of the causal configuration of the parties on the parties’
settings cannot be arbitrary, because it must agree with causality. To formulate the
constraints on this dependence, we will need to introduce some more terminology.

For any fixed causal configuration κ(1, · · · , n) of the local experiments S =
{1, · · · , n}, there are local experiments that are in no-one else’s causal future. The
full set of such local experiments, {i, j, · · · } ⊂ {1, · · · , n}, will be referred to as the
local experiments that are first, or as the first consecutive set1 and will be denoted by

1In the Chap. 6 following the relevant paper [25] we refer to these sets as non-signaling sets,
because by definition the parties in this set cannot signal to each other. However, the consecutive
sets are defined by asking the question ‘who is first’, whereas the nonsignaling sets are defined
by the question ‘who is last’. This implies that in a given situation, the consecutive sets and the
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[i, j, · · · ]I. Next, if the first consecutive set does not include all of the local exper-
iments, there are local experiments whose causal past contains local experiments
from, and only from, the first consecutive set. The full set of these will be referred to
as the local experiments that are second, or as the second consecutive set, and will be
denoted by [k, l, · · · ]II. Then, if the first and second consecutive sets do not include
all local experiments, there are local experiments whose causal past contains local
experiments from both sets [i, j, · · · ]I and [k, l, · · · ]II and only from those sets. The
full set of these will be referred to as the local experiments that are third, or as the
third consecutive set, and will be denoted by [p, q, · · · ]III, and so on.

The following proposition will play a central role in our derivation of the form
of multipartite causal processes. We apply the condition for causality (2.3) to con-
secutive sets. As a reminder, the condition for causality states that for every party A
that is not in the causal past of a subset X of the rest of the parties, the joint proba-
bility p(κ(A,X ), A � X , oX |sX , s A) is independent of the settings of A, since A’s
settings cannot be correlated with any events in its causal past. Now that we have
defined the consecutive sets, in the proposition that follows we apply the condition
for causality to consecutive sets. The intuition is that, just as the probability of party
A to not be in the causal past ofX is independent of the settings of A, the probability
for a set of parties to be in one of the first K consecutive sets, is independent of the
settings of parties that are in the causal future of this consecutive set (namely that
belong to a set with an index larger than K). At the same time, we apply the condition
for causality on the parties inside the consecutive set K knowing that all the parties
are causally independent, and we get the following proposition.

Proposition 2.3.3 Consider a causal process for S = {1, · · · , n}, n ≥ 1, with an
associated joint probability distribution p(κ(1, · · · , n), o1, · · · , on|s1, · · · , sn),
where κ(1, · · · , n) are the causal configurations of the local experiments. The
probability for the first K consecutive sets to consist of specific local experiments,
[1I, · · · , nI]I, · · · , [1K, · · · , nK]K, these experiments to have a specific causal con-
figuration κ(1I, · · · , nK), the experiments in the first K − I consecutive sets to
have a specific set of outcomes o1I , · · · , onK−I , and a given (possibly empty) sub-
set {1K, · · · , gK} ⊂ {1K, · · · , nK} of the local experiments in the Kth set (given up to
relabeling) to have specific outcomes o1K , · · · , ogK , can depend non-trivially only on
the settings of the local experiments indicated in the first K − I consecutive sets and
the subset {1K, · · · , gK},

p(κ(1I, · · · , nK), [1I, · · · , nI]I, · · · , [1K, · · · , nK]K, o1I , · · · , ogK |s1, · · · , sn)

= p(κ(1I, · · · , nK), [1I, · · · , nI]I, · · · , [1K, · · · , nK]K, o1I , · · · , ogK |s1I , · · · , sgK),

(2.19)

where we define the 0th set as the empty set. The Proof is given in the Appendix of
the related paper [1] and briefly it goes like this: First, observe that the property

non-signaling sets will not coincide—although theywill both contain sets of parties that are causally
independent.
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(2.19) holds for the case where the specified K consecutive sets exhaust all local
experiments {1, · · · , n}. This is because, in this case, each of the local experiments
in the Kth consecutive set is causally preceded by or causally independent from every
other local experiment. Hence, the definition of causality (2.3) directly implies the
desired relation. The general case follows by induction from this special case and
the following Lemma whose proof is given in the Appendix of the related paper [1].

Lemma 1 Let the property (2.19) hold for K = K′ + I, where K′ ≥ 1. Then it also
holds for K = K′.

An important consequence of Proposition 2.3.3 is that the probability for a given
set of local experiments to be first is independent of the settings of all parties (this is
the case of K = 1 and the subset {1K, · · · , gK} being empty). For example, consider
the different causal configurations of three parties—Alice (A), Bob (B), and Charlie
(C)—which are compatiblewith [C]I (Fig. 2.5). Each of the individual configurations
has a probability that may depend on the setting of Charlie, but the overall probability
for Charlie to be first, i.e., for any one of these configurations to be realized (which
is the sum of the probabilities for the individual configurations), is independent of
the settings of all parties, including Charlie. (To justify the latter, remember that the
condition for causality was that the settings of Charlie cannot affect events in its
causal past or causal elsewhere nor the causal order of them and Charlie. Hence, if
the settings can affect whether a party is first or not, this means that they can affect
whether an event occurs in its past or not, which is in conflict with causality). This
independence of the first consecutive set on the settings of all parties will play a key
role in our characterization of the structure of multipartite causal processes. We will
first develop the characterization for the case of three parties in order to illustrate the
underlying principle, and then we will extend it to the general multipartite case.

Tripartite Causal Processes

The groups of tripartite causal configurations compatible with the different possibil-
ities for the first consecutive set of parties are listed in Table2.1. In terms of these
possibilities, the probabilities of a tripartite causal process can be written

p(oA, oB, oC |s A, sB, sC) = p([A]I) p(oA, oB, oC |s A, sB, sC , [A]I)
+ p([B]I) p(oA, oB, oC |s A, sB, sC , [B]I)
+ p([C]I) p(oA, oB, oC |s A, sB, sC , [C]I)
+ p([A, B]I) p(oA, oB, oC |s A, sB, sC , [A, B]I)
+ p([A,C]I) p(oA, oB, oC |s A, sB, sC , [A,C]I)
+ p([B,C]I) p(oA, oB, oC |s A, sB, sC , [B,C]I)
+ p([A, B,C]I) p(oA, oB, oC |s A, sB, sC , [A, B,C]I),

(2.20)
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Table 2.1 The mutually exclusive groups of tripartite causal configurations

Groups of tripartite causal configurations whose probabilities are independent of the parties’
settings, defined by the set of parties that are first

[A]I: [A ≺ B, A ≺ C , B ≺ C] or [A ≺ B, A ≺ C , C ≺ B] or [A ≺ B, A ≺ C , B �� C]

[B]I: [B ≺ A, B ≺ C , A ≺ C] or [B ≺ A, B ≺ C , C ≺ A] or [B ≺ A, B ≺ C , A �� C]

[C]I: [C ≺ A, C ≺ B, A ≺ B] or [C ≺ A, C ≺ B, B ≺ A] or [C ≺ A, C ≺ B, A �� B]

[A, B]I: [A �� B, A ≺ C , B �� C] or [A �� B, A �� C , B ≺ C] or [A �� B, A ≺ C ,
B ≺ C]

[A,C]I: [A �� C , A ≺ B, B �� C] or [A �� C , A �� B, C ≺ B] or [A �� C , A ≺ B,
C ≺ B]

[B,C]I: [B �� C , B ≺ A, C �� A] or [B �� C , B �� A, C ≺ A] or [B �� C , B ≺ A,
C ≺ A]

[A, B,C]I: [A �� B, B �� C , A �� C]

where

p([A]I) + p([B]I) + p([C]I)
+ p([A, B]I) + p([A,C]I) + p([B,C]I) + p([A, B,C]I) = 1, (2.21)

(see Fig. 2.6 for a pictorial representation of the latter sum) and the probability distri-
butions p(oA, ...|s A, ..., [· · · ]I) for a given [· · · ]I, defined whenever p([· · · ]I) �= 0,
describe processes which we will denote by W [··· ]I . (Note that we can imagine that
the variable [· · · ]I is associated with an event in the past of all local experiments,
i.e., these can be thought of as a proper pre-selected process.)

In a compact form, Eq. (2.20) can be written

W A,B,C
c = p([A]I) W [A]I + p([B]I) W [B]I + p([C]I) W [C]I

+ p([A, B]I) W [A,B]I + p([A,C]I) W [A,C]I + p([B,C]I) W [B,C]I

+ p([A, B,C]I) W [A,B,C]I ,
(2.22)

i.e., the overall process is amixture of processes defined conditionally on the different
scenarios [· · · ]I. The processes W [··· ]I cannot be arbitrary but must be compatible
with causality, the conditions for which we derive next.

Fig. 2.6 Pictorial representation of the different independent probabilities of Eq. (2.21)
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One party is first: Consider the case in which one party is first, say [C]I (Fig. 2.5).
There are three distinct causal configurations compatiblewith this case, inwhich A ≺
B, B ≺ A, or A �� B (Table2.1). We can expand p(oA, oB, oC |s A, sB, sC , [C]I)
conditionally on these configurations as follows:

p(oA, oB , oC |s A, sB , sC , [C]I) = p(oC |s A, sB , sC , [C]I)×
[p(A ≺ B|s A, sB , sC , oC , [C]I) p(oA, oB |s A, sB , sC , oC , A ≺ B, [C]I) +
p(B ≺ A|s A, sB , sC , oC , [C]I) p(oA, oB |s A, sB , sC , oC , B ≺ A, [C]I) +
p(A �� B|s A, sB , sC , oC , [C]I) p(oA, oB |s A, sB , sC , oC , A �� B, [C]I)],

(2.23)
where p(oA, oB |s A, sB, sC , oC ,κ(A, B), [C]I) is defined when p(κ(A, B)|s A, sB,

sC , oC , [C]I) �= 0, and

p(A ≺ B|s A, sB, sC , oC , [C]I) + p(B ≺ A|s A, sB, sC , oC , [C]I)
+ p(A �� B|s A, sB, sC , oC , [C]I) = 1. (2.24)

From Proposition 2.3.3, we have that

p(oC |s A, sB , sC , [C]I) ≡ p([C]I, oC |s A, sB , sC )/p([C]I) = p([C]I, oC |sC )/p([C]I) = p(oC |sC , [C]I).

Similarly, we have

p(A ≺ B|s A, sB, sC , oC , [C]I) = p(A ≺ B|s A, sC , oC , [C]I),
p(B ≺ A|s A, sB, sC , oC , [C]I) = p(B ≺ A|sB, sC , oC , [C]I),

p(A �� B|s A, sB, sC , oC , [C]I) = p(A �� B|sC , oC , [C]I),
(2.25)

which together with Eq. (2.24) implies

p(A ≺ B|s A, sB, sC , oC , [C]I) = p(A ≺ B|sC , oC , [C]I),
p(B ≺ A|s A, sB, sC , oC , [C]I) = p(B ≺ A|sC , oC , [C]I),

p(A �� B|s A, sB, sC , oC , [C]I) = p(A �� B|sC , oC , [C]I).
(2.26)

Substituting this in Eq. (2.23), we obtain

p(oA, oB, oC |s A, sB, sC , [C]I) = p(oC |sC , [C]I)×
[p(A ≺ B|sC , oC , [C]I) p(oA, oB |s A, sB, sC , oC , A ≺ B, [C]I)

+ p(B ≺ A|sC , oC , [C]I) p(oA, oB |s A, sB, sC , oC , B ≺ A, [C]I)
+ p(A �� B|sC , oC , [C]I) p(oA, oB |s A, sB, sC , oC , A �� B, [C]I)], (2.27)
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with

p(A ≺ B|sC , oC , [C]I) + p(B ≺ A|sC , oC , [C]I) + p(A �� B|sC , oC , [C]I) = 1,
(2.28)

where the probability distributions

p(oA, oB |s A, sB, sC , oC , A ≺ B, [C]I),
p(oA, oB |s A, sB, sC , oC , B ≺ A, [C]I),

p(oA, oB |s A, sB, sC , oC , A �� B, [C]I),
(2.29)

describe bipartite processes for Alice and Bob for every fixed value of (sC , oC ).
The assumption of causality implies conditions for these processes too. They must
respect the no-signaling constraints imposed by the causal configuration κ(A, B)

they are conditioned on—the first one must involve no signaling from Bob to Alice,
the second one must involve no signaling from Alice to Bob, and the third one must
involve no signaling between Alice and Bob in either direction. This follows from
the fact that

p(oA, oB |s A, sB , sC , oC ,κ(A, B), [C]I) = p([C]I,κ(A, B), oA, oB , oC |s A, sB , sC )

p([C]I) p(oC |sC , [C]I) p(κ(A, B)|sC , oC , [C]I) ,

(2.30)

and the observation that, on the right-hand side, since only the numerator depends
on s A, oA, sB , and oB , the respective no-signaling constraints on the quantity on the
left-hand side follow from the requirement that the numerator is compatible with
Eq. (2.3).

To expand our understanding of a tripartite causal process, we use the definitions
of reduced and conditional process, to write down a compact and intuitive form for
them. Notice that the probabilities p(oC |sC , [C]I) in Eq. (2.27) define a reduced
monopartite process for Charlie,WC , while the probabilities enclosed by the square
brackets define a conditional bipartite processW A,B|C

c , which is causal (indicated by
the subscript c) for every fixed (sC , oC ). In a compact form, this can be written

W [C]I = W A,B|C
c ◦ WC . (2.31)

The form (2.31) is necessary for a causal process for which all causal configura-
tions that have non-zero probabilities respect that [C]I (in that case, a causal process
of the general form (2.22) reduces to the termW [C]I ). It is also sufficient, because this
form provides an explicit joint probability distribution p[C]I(κ(A, B,C), oA, oB, oC |
s A, sB, sC )—equal to

p([C]I,κ(A, B), oA, oB, oC |s A, sB, sC ) =
p(oC |sC , [C]I) p(κ(A, B)|sC , oC , [C]I) p(oA, oB |s A, sB, sC , oC ,κ(A, B), [C]I)

(2.32)
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when κ(A, B,C) is compatible with [C]I, and to zero otherwise—for which condi-
tion (2.3) is satisfied with respect to every party. Indeed, condition (2.3) is satisfied
with respect toC since the probability for any party being in the causal past or causal
elsewhere of C is zero. It is also satisfied with respect to A (similarly for B) since
the no-signaling constraints respected by p(oA, oB |s A, sB, sC , oC ,κ(A, B), [C]I)
guarantee that

p[C]I (κ(A, B,C), A � B, A � C, oB , oC |s A, sB , sC ) = p[C]I (κ(A, B,C), A � B, A � C, oB , oC |sB , sC ).

(2.33)
The necessary and sufficient conditions for a causal process compatible with [A]I
and [B]I are analogous.
Two parties are first: Let us now consider the case where two parties are first,
say [B,C]I. The possible causal configurations in this case (Table2.1) are depicted
in Fig. 2.7. Similarly to the previous case, using the assumption of causality, we
can expand the probabilities p(oA, ...|s A, ..., [B,C]I) conditionally on the different
configurations as follows:

p(oA, oB , oC |s A, sB , sC , [B,C]I) = p(oB , oC |sB , sC , [B,C]I)×
[p(B ≺ A,C �� A|sB , oB , sC , oC , [B,C]I)p(oA|s A, sB , oB , sC , oC , B ≺ A,C �� A, [B,C]I)
+ p(B �� A,C ≺ A|sB , oB , sC , oC , [B,C]I)p(oA|s A, sB , oB , sC , oC , B �� A,C ≺ A, [B,C]I)

+ p(B ≺ A,C ≺ A|sB , oB , sC , oC , [B,C]I)p(oA|s A, sB , oB , sC , oC , B ≺ A,C ≺ A, [B,C]I)], (2.34)

with

p(B ≺ A,C �� A|sB , oB , sC , oC , [B,C]I) + (B �� A,C ≺ A|sB , oB , sC , oC , [B,C]I)+
p(B ≺ A,C ≺ A|sB , oB , sC , oC , [B,C]I) = 1, (2.35)

where the probabilities p(oB, oC |sB, sC , [B,C]I) in Eq. (2.34) define a reduced
bipartite process that involves no signaling between B and C , and the probabilities
in the square brackets describe a conditional process for A. The fact that there is no
signaling between B and C in the first process follows easily from Proposition 2.3.3.

Fig. 2.7 The three possible tripartite causal configurations included in the group where B and C
are first. From left to right: [B �� C and B ≺ A andC �� A], [B �� C and B ≺ A andC ≺ A],
[B �� C and B �� A and C ≺ A] [1]
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It turns out that the decomposition over different causal configurations does not
yield anynontrivial conditions on theprobabilities of the conditional process enclosed
in the square brackets of Eq.2.34, i.e., the simpler form

p(oA, oB , oC |s A, sB , sC , [B,C]I) = p(oB , oC |sB , sC , [B,C]I) p(oA|s A, sB , oB , sC , oC , [B,C]I)
(2.36)

is both necessary and sufficient for a valid W [B,C]I . Necessity is obvious since
Eq. (2.34) implies Eq. (2.36). Sufficiency follows from the fact that the right-
hand side of Eq. (2.36) is compatible with the particular case p(B ≺ A,C ≺
A|sB, oB, sC , oC , [B,C]I) = 1, where the only non-trivial constraints on the proba-
bilities p(oA, oB, oC |s A, sB, sC , [B,C]I) imposed by κ(A, B,C) are that there is no
signaling from Alice to Bob and Charlie, and no signaling between Bob and Charlie
in their reduced bipartite process. These are clearly guaranteed by Eq. (2.36) when
the reduced process {p(oB, oC |sB, sC , [B,C]I)} involves no signaling between Bob
andCharlie. Therefore, similarly to Eq. (2.31), we canwrite Eq. (2.36) in the compact
form

W [B,C]I = W A|B,C ◦ W B,C
ns , (2.37)

whereW B,C
ns is a non-signaling bipartite process for Bob and Charlie, andW A|BC is

a monopartite process for Alice conditional on the events in the laboratories of Bob
and Charlie.

All three parties are first: Finally, in the case where all of the parties are first, we
only have the constraint that

W [A,B,C]I = W A,B,C
ns (2.38)

is a tripartite non-signaling process. Again, this follows from Proposition 2.3.3.

Result: Form of the tripartite causal processes. We have obtained that a tripartite
causal process W A,B,C

c must have the form

W A,B,C
c = p([A]I) W B,C |A

c ◦ W A + p([B]I) W A,C |B
c ◦ W B

+ p([C]I) W A,B|C
c ◦ WC + p([A, B]I) WC |A,B ◦ W A,B

ns

+ p([A,C]I) W B|A,C ◦ W A,C
ns + p([B,C]I) W A|B,C ◦ W B,C

ns

+ p([A, B,C]I) W A,B,C
ns , (2.39)

with suitable probability weights p([A]I), p([B]I), p([C]I), p([A, B]I), p([A,C]I),
p([B,C]I), and p([A, B,C]I). This form is also sufficient for a tripartite process to
be causal because it explicitly gives a probability distribution

p(κ(A, B,C), oA, oB , oC |s A, sB , sC ) =
∑

[··· ]I
p([· · · ]I) p(κ(A, B,C), oA, oB , oC |s A, sB , sC , [· · · ]I) (2.40)
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that satisfies Eq. (2.3). Indeed, we have seen that each of the distributions

p(κ(A, B,C), oA, oB, oC |s A, sB, sC , [· · · ]I) (2.41)

in this convex mixture is an extension of a causal process {p(oA, oB, oC |s A, sB,

sC , [· · · ]I)}, and hence it satisfies Eq. (2.3). Since theweights p([· · · ]I) in themixture
are independent of s A, sB , and sC , andEq. (2.3) is linear in p(κ(A, B,C), oA, oB, oC |
s A, sB, sC , [· · · ]I), the equation is satisfied by the whole mixture too.

Condition (2.39) can be further simplified by noticing that the processes corre-
sponding to the cases in which two or three parties are first have forms compatible
with cases in which only a single party is first. For instance,W [B,C]I satisfies the nec-
essary and sufficient conditions for a valid W [B]I or a valid W [C]I , while W [A,B,C]I

satisfies the necessary and sufficient conditions for any of W [A]I , W [B]I , or W [C]I .
The compatibility of W [B,C]I with [C]I, for example, can be seen from the fact that
Eq. (2.36) (or Eq. (2.37)) is compatible with the case [C]I in which C ≺ B ≺ A,
since the only constraints in that case are that Alice cannot signal to Bob and Char-
lie, and that Bob cannot signal to Charlie, which are satisfied by the probabilities
in Eq. (2.36). Similarly, W [B,C]I is compatible with [C]I. A process W [A,B,C]I is
compatible with any causal configuration since it does not involve signaling between
any of the parties. These observations suggest that we can group (in a generally non-
unique way) the terms in the probabilistic mixture (2.22) so as to obtain a mixture
of three processes

W A,B,C
c = p(w(B,C)�A) W (B,C)�A

+ p(w(A,C)�B) W (A,C)�B + p(w(A,B)�C) W (A,B)�C , (2.42)

where w(B,C)�A, w(A,C)�B , and w(A,B)�C , are some mutually exclusive variables
whose probabilities satisfy p(w(B,C)�A) + p(w(A,C)�B) + p(w(A,B)�C) = 1, such
that conditionally on these variables, the causal configuration of the parties belongs
to one of the groups compatible with (B,C) � A (meaning B � A ∧ C � A),
(A,C) � B, and (A, B) � C , respectively, while the processes W (B,C)�A,
W (A,C)�B , and W (A,B)�C , satisfy the most general causal constraints compatible
with these groups. For instance, conditionally onw(B,C)�A, the causal configurations
of the parties may belong to any of the groups defined by [A]I, [A, B]I, [A,C]I, and
[A, B,C]I. The process W (B,C)�A would itself be a probabilistic mixture of pro-
cesses compatible with these groups, which most generally satisfy the constraints
satisfied by W [A]I . That is,

W (B,C)�A = W B,C |A
c ◦ W A, (2.43)

W (A,C)�B = W A,C |B
c ◦ W B, (2.44)

W (A,B)�C = W A,B|C
c ◦ WC . (2.45)



2.3 The Process Framework 35

Obviously, the existence of a convex decomposition (2.42) is both necessary and
sufficient for a tripartite process to be causal, since any process of the form (2.39)
can be written in the form (2.42), while Eq. (2.42) is a special case of Eq. (2.39).

As in the bipartite case, for any fixed number of settings and fixed number of
outcomes for each party, the constraint (2.42) provides a means of testing whether
the corresponding tripartite probabilities are compatible with causality. The set of
probabilities that satisfy Eq. (2.42) is the convex hull of the probabilities compatible
with causal configurations in which (B,C) � A, (A,C) � B, and (A, B) � C . As
already mentioned, discuss such a tripartite polytope on Chap. 4.

n-Partite Causal Processes

The extension of the conditions for causality of a process to the case of n parties can
be defined iteratively. The following theoremprovides the generalization of condition
(2.39).

Theorem 2 A process for a set of parties S = {1, · · · , n}, n ≥ 1, is causal if and
only if it can be written in the form

WS
c =

∑

X⊂S,X �={}
pXWS\X |X

c ◦ WX
ns , (2.46)

where the sum is over all nonempty subsets X of the local experiments S, pX are
suitable probability weights (which can be interpreted as the probability for X to
be first, pX = p([X ]I)), S\X denotes the relative complement of X in S, WX

ns is a
non-signaling reduced process for X , and the conditional processWS\X |X

c is either
the trivial process (whenX = S) or otherwise can be written in the same form (2.46)
for every given value of the possible events in X . The proof is given in the Appendix
of the relevant paper [1].

As in the bipartite and tripartite cases, we can simplify the conditions for an n-
partite process to be causal by noticing that the constraints on a process compatible
with a given set of k (1 ≤ k ≤ n) parties being first are compatiblewith the constraints
on a process compatible with the case in which only a single one of the k parties is
first. Therefore, by an argument analogous to the one in the tripartite case, we obtain
the following alternative formulation of the conditions.

Theorem 3 (Canonical causal decomposition) A causal process for n parties is one
that can be written in the (generally non-unique) form

W1,··· ,n
c =

n∑

i=1

qiW (1,··· ,i−1,i+1,··· ,n)�i , qi ≥ 0,∀i,
n∑

i=1

qi = 1, (2.47)

with

W (1,··· ,i−1,i+1,··· ,n)�i = W1,··· ,i−1,i+1,··· ,n|i
c ◦ W i , (2.48)
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where the (n − 1)-partite conditional process W1,··· ,i−1,i+1,··· ,n|i
c is either trivial

(when n = 1) or has the form (2.47) for every value of the event in i .

The weights qi in Eq. (2.48) can be thought of as the probabilities qi ≡
p(w(1,··· ,i−1,i+1,··· ,n)�i ) for a mutually exclusive set of variables w(1,··· ,i−1,i+1,··· ,n)�i

for which the causal configurations of the parties belong to a group such that
(1, · · · , i − 1, i + 1, · · · , n) � i .

Theorem 3 (alternatively Theorem 3.4) gives iteratively formulated necessary
and sufficient conditions for a process to be causal in the general multipartite case. It
can be understood as describing an ‘unraveling’ of the different possible sequences
of operations in steps: first, the party that is first and his/her monopartite process
are selected at random based on some probability distribution; next, the party that is
second and his/hermonopartite process are selected at random from some probability
distribution that most generally can depend on the first party’s setting and outcome;
next, the party that is third and his/her monopartite process are selected from some
probability distribution that most generally can depend on the settings and outcomes
of the first two parties, and so on. We refer to this intuitive decomposition as the
canonical causal decomposition of a causal process.

n-partite polytope: By an argument analogous to the one in the tripartite case, one
easily sees from Theorem 3 that for any fixed number of settings and outcomes for
each party, the causal probabilities for n parties form a polytope, provided that the
causal probabilities for (n − 1) parties form a polytope. By induction, this implies a
polytope structure for the general multipartite case. The nontrivial facets of such a
polytope define causal inequalities. Examples of n-partite causal inequalities, where
n = 2k + 1, for binary inputs and outputs can been found in Refs. [8, 10]. It would be
interesting to check if these inequalities are facets of the respective causal polytope.

2.4 The Quantum Process Framework

2.4.1 General Quantum Processes

Synopsis: We’ve finally reached to the quantum stuff. In this section the process
matrix framework is reviewed. We talk about the Hilbert-Schmidt decomposition of
the process matrix. This decomposition helps us investigate the process matrix in
terms the causal configuration it is compatible with. We write two propositions, one
for the allowed terms in a valid process matrix and one on what the terms say about
the lack of signaling between sets of parties.

Given the above discussion on our general operational framework for pre-selected
processes, or as we call it, the process framework, the quantum process framework,
introduced in Ref. [2], is a particular theory within the general process framework.
It is based on a set of assumptions about the local operations of the parties and the
joint probability of their local outcomes, which we review next.
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The first main assumption is that of local quantum mechanics, which states that
each experimenter inside their laboratory describes their system and operations with
quantum mechanics. Specifically, we denote the input and output system of each
experimenter by XI , XO , with their associated Hilbert spaces HXI , HXO and of
dimensions dXI , dXO respectively. For each party, the set of (quantum) operations
that can be performed describes a quantum instrument [37]. A quantum operation
has a set of outcomes j = 1, · · · , n. Each outcome induces a specific transformation
from the input to the output system, which is described by a completely positive
(CP) map MX

j : L(HXI ) → L(HXO ), where L(H) is the space of linear operators
over the (finite-dimensional) Hilbert spaceH. The action of eachMX

j on an operator

σ ∈ L(HXI ) can be written in the Kraus form [38]MX
j (σ) = ∑m

k=1 E jkσE
†
jk , m =

dXI dXO , where the Kraus operators E jk : HXI → HXO satisfy
∑m

k=1 E
†
jk E jk ≤ 1XI ,

∀ j . The set of CPmaps
{
MX

j

}n

j=1
corresponding to all possible outcomes of a quan-

tum operation has the property that
∑n

j=1 MX
j is CP and trace-preserving (CPTP),

which is equivalent to the condition
∑n

j=1

∑m
k=1 E

†
jk E jk = 1XI .

The second main assumption is that the joint probabilities for the outcomes of the
operations of a set of parties, Alice, Bob, Charlie, · · · , is a non-contextual function
of the local CP maps,

p(i, j, k, · · · |{MA
i }, {MB

j }, {MC
k } · · · ) = ω(MA

i ,MB
j ,MC

k , · · · ). (2.49)

The requirement that local procedures agree with standard quantum mechanics
implies that the function ω should be linear in the local CP maps [2].

Such a linear function can be written in a convenient form if we express each local
CPmap as a positive semidefinite operator using a version of the Choi-Jamiołkowsky
(CJ) isomorphism [33, 34]. The CJ operator MAI AO

i ∈ L(HAI ⊗ HAO ) correspond-
ing to a linear map MA

i : L(HAI ) → L(HAO ) is defined as MAI AO
i :=[I ⊗ Mi

(|φ+〉〈φ+|)]T, where |φ+ 〉 = ∑dAI
j=1 | j j〉 ∈ HAI ⊗ HAI is a (not normal-

ized) maximally entangled state on two copies ofHAI , the set of states {| j〉}dAIj=1 is an
orthonormal basis ofHAI , I is the identity map, and T denotes matrix transposition
in that basis of AI and a specific basis of AO . Using the CJ representation, the joint
probabilities (2.49) can be written in the form

p(i, j, k, · · · |{MA
i }, {MB

j }, {MC
k }, · · · )

= Tr
[
W AI AO BI BOCICO ···

(
MAI AO

i ⊗ MBI BO
j ⊗ MCICO

k ⊗ · · ·
)]

, (2.50)

The last main assumption behind the quantum process framework is that the
local operations of the parties can be extended to act on input ancillas A′

I , B
′
I ,

C ′
I , · · · , that are allowed to be prepared in an arbitrary quantum state ρA′

I B
′
I C

′
I ···,

where ρA′
I B

′
I C

′
I ··· ≥ 0, Tr ρA′

I B
′
I C

′
I ··· = 1. Upon such an extension, the original operator

W AI AO BI BOCICO ··· becomes W AI AO BI BOCICO ··· ⊗ ρA′
I B

′
I C

′
I ···. The requirement that the
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probabilities are non-negative for any combination of local CP maps MA
i , MB

j ,
MC

k , · · · , on the extended systems A = AI A′
I AO , B = BI B ′

I BO , C = CIC ′
I CO ,

· · · , implies that
W AI AO BI BOCICO ··· ≥ 0. (2.51)

Finally, since the probabilities should sumup to1 for a complete set of local outcomes,
we have the following condition

Tr
[
W AI AO BI BOCICO ··· (MAI AO ⊗ MBI BO ⊗ MCICO ⊗ · · · )] = 1, (2.52)

∀MAI AO , MBI BO , MCICO , · · · ≥ 0,

TrAO M
AI AO = 1AI ,TrBO M

BI BO = 1BI ,TrCO M
CICO = 1CI , · · · ,

where TrXO denotes partial trace over XO . Here, we have used the fact that a
linear map MX is CPTP if and only if its CJ operator satisfies MXI XO ≥ 0 and
TrXO M

XI XO = 1XI . An operator W AI AO BI BOCICO ··· that satisfies conditions (2.51)
and (2.52) is called a process matrix [2]. Knowing the process matrix, by Eq. (2.50)
we have the probabilities for the outcomes of any combination of local operations
of the parties, i.e., the process matrix provides a complete description of a process.
(Here, the set SX of possible settings of a given party is the set of quantum operations
with the respective input and output systems.)

Hilbert-Schmidt decomposition: The process matrix can be expanded in a Hilbert-
Schmidt basis of orthogonal matrices on the Hilbert spaces of the input and output
systems of the parties, which is helpful in analyzing different properties of the cor-
relations that the process allows. A Hilbert-Schmidt basis of L(HX ) is given by a set

of Hermitian operators {σX
μ }d2

X−1
μ=0 , with σX

0 = 1X , Tr σX
μ σX

ν = dXδμν , and Tr σX
j = 0

for j = 1, ..., d2
X − 1. In such a basis, a process matrix can be written

W AI AO BI BOCI CO ··· =
∑

i, j,k,l,m,n···
wi jklmn···σAI

i ⊗ σAO
j ⊗ σBI

k ⊗ σBO
l ⊗ σCI

m ⊗ σCO
n ⊗ · · · ,

(2.53)

wi jklmn··· ∈ R, ∀i, j, k, l,m, n, · · · .

It turns out that many properties of process matrices can be formulated entirely as
statements about the nonzero terms in the above expansion [2]. For this purpose, it is
convenient to introduce the following terminology. Non-zero terms proportional to
σAI
i ⊗ 1rest (i ≥ 1) will be called terms of type AI , non-zero terms proportional to

σAO
i ⊗ σBI

j ⊗ 1rest (i , j ≥ 1) will be called terms of type AO BI , etc. Every process
matrix also contains a non-zero term proportional to the identity operator on all
systems. This term will be referred to as of type 1, or as the identity term.

Bipartite case—allowed terms: InRef. [2], itwas shown that anoperatorW AI AO BI BO

satisfies condition (2.52) if and only if it contains at most terms from the follow-
ing types: 1, AI , BI , AO BI , AI BO , AI AO BI , AI BI BO . This rule also includes the
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Table 2.2 The types of terms that are forbidden in a tripartite process matrix W AI AO BI BOCI CO

CO CICO BO BOCO

BOCICO BI BO BI BOCO BI BOCICO

AO AOCO AOCICO AO BO

AO BOCO AO BOCICO AO BI BO AO BI BOCO

AO BI BOCICO AI AO AI AOCO AI AOCICO

AI AO BO AI AO BOCO AI AO BOCICO AI AO BI BO

AI AO BI BOCO AI AO BI BOCICO

Table 2.3 The types of terms allowed in a tripartite process matrix W AI AO BI BOCI CO

CI BOCI BI BICO BICI

BICICO BI BOCI AOCI AO BOCI AO BI

AO BICO AO BICI AO BICICO AO BI BOCI AI

AICO AICI AICICO AI BO AI BOCO

AI BOCI AI BOCICO AI BI AI BICO AI BICI

AI BICICO AI BI BO AI BI BOCO AI BI BOCI AI BI BOCICO

AI AOCI AI AO BOCI AI AO BI AI AO BICO AI AO BICI

AI AO BICICO AI AO BI BOCI 1

monopartite case, which is obtained when the input and output systems of one of the
parties is trivial (the one-dimensional Hilbert space C1). Specifically, a monopartite
operator W AI AO satisfies condition (2.52) if and only if it contains at most terms of
type 1 and AI . The types of allowed terms can be generalized to the n-partite case
as follows.

Proposition 2.4.1 An operator of the form (2.53) satisfies condition (2.52) if and
only if in addition to the identity term it contains at most terms in which there is a
nontrivial σ operator on X1 and a trivial one (the identity operator) on X2 for some
party X ∈ {A, B,C, · · · }.

Tripartite case—allowed terms: In theAppendix of the related paper [1],we present
the Proof of the above proposition for the case of three parties and the general
case follows accordingly. From the analysis in that Proof we see that a general
operator W AI AO BI BOCICO can contain up to 64 types of terms. The condition for
normalisation imposes further constraints. Table2.2 lists the overall forbidden types
of terms, and Table2.3 lists the allowed types of terms. The positive semidefiniteness
condition (2.51) does not limit any further the allowed types of terms, because one can
conceive of a positive semidefinite matrix containing nonzero terms of any chosen
type (this can be ensured by taking the nontrivial σ terms with non-zero coefficients
of sufficiently small magnitude relative to the weight of the identity term which is
always fixed). Thus, an operator W AI AO BI BOCICO is a valid tripartite process matrix,
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Table 2.4 The types of terms allowed in a causal process matrix W AI AO BI BOCI CO

(A,B)�C
compatible

with (A, B) � C

CI BI BICO BICI BICICO

AO BI AO BICO AO BICICO AI AICO

AICI AICICO AI BO AI BOCO AI BOCICO

AI BI AI BICO AI BICI AI BICICO AI BI BO

AI BI BOCO AI BI BOCICO AI AO BI AI AO BICO AI AO BICICO

AI BOCI AO BICI AI AO BICI AI BI BOCI 1

i.e., it satisfies conditions (2.51) and (2.52), if and only if it satisfies condition (2.51)
and contains only terms of the types listed in Table2.3, where the identity term comes
with the weightw000000 = 1

dAI dBI dCI
. In a similar way, one proves the allowed types of

terms in the general n-partite case. (For an alternative formulation of the conditions
for an operator to be a valid process matrix, see Ref. [21].)

n-partite case - allowed terms: The types of terms that appear in the expansion of a
process matrix are closely related to the signaling between the parties that the process
allows. For example, a bipartite process involves signaling from Bob to Alice if and
only if the process matrix contains terms of type AI BO or AI BI BO [2]. To state
the condition for (no) signaling in the multipartite case, it is convenient to introduce
the following terminology (see also Ref. [21]). Consider a Hilbert-Schmidt term
σAI
i ⊗ σAO

j ⊗ σBI
k ⊗ σBO

l ⊗ σCI
m ⊗ σCO

n ⊗ · · · as in Eq. (2.53). The restriction of this
term onto, say, subsystems BOCICO · · · is defined as σBO

l ⊗ σCI
m ⊗ σCO

n ⊗ · · · .
Proposition 2.4.2 An n-partite process matrix for a set of parties {1, · · · , n} does
not permit signaling from, say, (1 and 2 and · · · and k) to (k + 1 and k + 2 and · · ·
and n) if an only if it contains only terms whose restriction onto 1112 · · · k1k2 are
of the allowed types for a process matrix on {1, · · · , k} as described in Proposition
2.4.1. The Proof is given in the Appendix of the related paper [1].

As an example, a tripartite quantum process that is causal and compatible with a
situation in which Charlie is first (Fig. 2.5) should involve no signaling from Alice
andBob toCharlie, and hence it can only contain the types of terms listed in Table2.4.
These constraints on the allowed types of terms imposed by causal order will turn out
to play an important role in the characterization of the so-called causally separable
quantum processes, which we define in the next subsection.

2.4.2 Causally Separable Quantum Processes

Synopsis: So far we have seen that a quantum process is described by the process
matrix. Here, we look at how the property of causality is expressed in terms of simple
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conditions on the form of the process matrix. When these conditions are satisfied
the process is called causally separable. We provide the bipartite case as an example
and we define the notion of causal separability to the multipartite case.

So far, we have investigated the property of causality in general processes: those
that obey it have a particular form and they are called causal processes. For quantum
processes, in terms of probabilities, of course nothing changes. A causal quantum
process is also causal process, i.e. no matter the specific theory used to describe the
local experiments, the collection of probabilities of the local outcomes will be still be
a process. Now we can further our investigation of the manifestations of the property
of causality: we can look into the process matrix of a quantum causal process and
see how the property of causality is expressed in terms of conditions on that matrix.

Bipartite case: Consider a bipartite quantum process for Alice and Bob, and assume
that it is a fixed-order process compatible with the causal configuration A ≺ B. In
that case, as argued earlier, the only constraint imposed by causal order is that the
process should involve no signaling fromBob toAlice. As pointed out in the previous
subsection, there can be signaling from Bob to Alice if and only if the process matrix
W AI AO BI BO contains terms of type AI BO or AI BI BO . Therefore, a process matrix
is compatible with A ≺ B if and only if none of these types of terms appear in its
expansion. This means that such a process matrix has the form

W A≺B = W AI AO BI ⊗ 1BO , (2.54)

whereW AI AO BI ≥ 0 (with TrW AI AO BI = dAO ) contains at most terms of type 1, AI ,
BI , AI BI , AO BI , AI AO BI . (This is equivalent to saying that W AI AO BI is a valid
process matrix for the case where Bob has a trivial output system, HBI = C1.)

Similarly, in the case where A �� B, the process matrix has the form

W A��B = W AI BI ⊗ 1AO BO , (2.55)

where W AI BI ≥ 0, TrW AI BI = 1. Such a process is realized in a situation in which
Alice and Bob receive input systems in a joint quantum state with a density matrix
W AI BI , and their output systems are discarded.

We can unify these two conditions to write down the form of a process matrix
compatible with B � A, which is identical to (2.54),

WB�A = W AI AO BI ⊗ 1BO , (2.56)

where W AI AO BI is a valid process matrix for the case where HBI = C1.
As shown in Ref. [39] within a different framework, all process matrices of the

type (2.56) can be realized by embedding the experiments of Alice and Bob in a
quantum circuit, so that Bob’s experiment does not precede Alice’s experiment in
the order of the circuit composition. Most generally, this corresponds to providing
Alice with an input system that is entangled with an ancilla, then sending Alice’s
output together with the ancilla through a quantum channel into Bob’s input, and
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then discarding Bob’s output. Such a process is referred to as quantum ‘channel with
memory’.

As we have seen earlier, a bipartite causal process is one that can be written in
the form (2.17) (which we re-write here for conveniency)

W A,B
c = q W A�B + (1 − q) W B�A, 0 ≤ q ≤ 1, (2.57)

where W A�B and W B�A are two processes compatible with A � B and B � A,
respectively. (Remember we denote a process withW and a process matrix withW ).
It is then tempting to conjecture that the class of causal quantum processes might be
those whose process matrices can be written in the form

W AI AO BI BO = q W A�B + (1 − q) WB�A, 0 ≤ q ≤ 1, (2.58)

where W A�B and WB�A have the form defined in Eq. (2.56). Certainly, since the
probabilities for the outcomes in the quantum process framework are linear functions
of the process matrix, a process matrix of the form (2.58) describes a causal process.

However, the reverse is not necessarily true: a causal process is not necessarily
described by a process matrix of the form (2.58). This means that the condition
for a process to be causal (Eq. (2.57)) does not imply that W A�B and W B�A in
the convex decomposition of the process should themselves be quantum process;
only their convex mixture needs to be. While it is conceivable that the structure of
quantum processes might imply the form (2.58) (indeed, this has been shown to
hold for a limited class of bipartite quantum processes [15]), there is no obvious
reason to expect this to hold in the general case. In fact, we will see that the natural
generalization of condition (2.58) to the multipartite case is not equivalent to the
condition that a process is causal. Recently, the same was shown to hold also in the
bipartite case, by Feix et al. [41].

A bipartite quantum process that admits the decomposition (2.58) was called
causally separable [2]. One way to think of the relation between causal and causally
separable quantum processes is in analogy with the relation between Bell-local and
separable (non-entangled) quantum states. ABell-local state is one forwhich the joint
probabilities for the outcomes of any combination of local measurements admits a
local hidden variable description (and hence such a state cannot be used to violate any
Bell inequality [42]). A separable quantum state is one for which each of the local
distributions can be thought of as arising from the respective local measurements
being applied on a local quantum state. A separable quantum state is clearly Bell
local, but the reverse is known not to be true [43]. The relation between causal
(2.17) and causally separable (2.58) bipartite quantum processes can be seen in an
analogous way—a causally separable process is one for which the processes into
which we decompose the process are themselves valid quantum processes, which
means that the set of causal processes is strictly larger than the one of causally
separable processes.
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Result:Here,wepropose to extend the notionof causal separability to themultipartite
case.

Definition 2.4.1 (Causally separable quantumprocess) A quantumprocess is called
causally separable if and only if it can be decomposed in the canonical form given by
Theorem 3 (which we re-write below for conveniency), with the additional condition
that each process on the right-hand side of Eq. (2.59) is a quantum process. (Note
that since the canonical form is defined iteratively, the latter is understood to hold
for all conditional processes in this definition).

Theorem (Canonical causal decomposition) A causal process for n parties is one
that can be written in the (generally non-unique) form

W1,··· ,n
c =

n∑

i=1

qiW (1,··· ,i−1,i+1,··· ,n)�i , qi ≥ 0,∀i,
n∑

i=1

qi = 1, (2.59)

with

W (1,··· ,i−1,i+1,··· ,n)�i = W1,··· ,i−1,i+1,··· ,n|i
c ◦ W i , (2.60)

where the (n − 1)-partite conditional process W1,··· ,i−1,i+1,··· ,n|i
c is either trivial

(when n = 1) or has the form (2.59) for every value of the event in i .

By a direct analogy, causally separable processes can be defined for any theory
formulated in the process framework, but here we will be interested specifically in
quantum processes. The process matrix of a causally separable quantum process will
be called a causally separable process matrix.

2.4.3 The Quantum Switch: An Example of the
Non-equivalence Between Causal and Causally
Separable Process in the Tripartite Case

Synopsis: We describe the setup of the quantum switch: a superposition of two
causally order quantum circuits, in each of which two parties, A and B, operate one
after the other (with alternate orders for each circuit) connected by a channel, and in
both cases are succeeded by a third party, C. We prove that the process matrix that
describes such a tripartite process is not causally separable, i.e. it cannot be written
as a convex combination of process matrices each compatible with (Y 1,Y 2) � Y 3,
for Y i = A, B,C . We show that the quantum process, however, (the collection of
the joint probabilities of the local outcomes, given their choice of settings) is causal.

The quantum switch was introduced in [5], as an example of a quantum architec-
ture beyond that of the standard quantum circuit model: a superposition of causally
ordered quantum circuits. In that, the order of two black-box quantum operations is
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conditioned on the value of a qubit (control qubit) prepared in superposition of two
logical values. The quantum operations are performed on a target bit, which is the
input and output system of the parties and we assume here to be a qubit. We can
think that the control bit, which controls the order of the operations, and the target bit
on which the operations are performed, are two different degrees of freedom of the
same system (like polarization and orbital angular momentum (OAM) respectively
of a photon).We can imagine that the particle can go in superposition of two different
paths (with the assumed degrees of freedom this can be achieved with a polarizing
beam-splitter): one path that goes first through Alice and then though Bob, and one
with the reverse order. For simplicity, we can imagine that the particle would always
go through Bob at a fixed time and, conditionally on the value of the control bit, the
particle would go through Alice before, or after that. It is assumed that independently
of the time at which the system may go through Alice’ laboratory in a given run,
Alice would apply the same operation on it.

To understand the effect of such a setup, consider first the case in which Alice and
Bob each apply a unitary operation on the system, UA and UB , respectively. Let us
denote the Hilbert space of the control qubit (polarization/path degree of freedom)
by Hc, and that of the system (OAM degree of freedom) by Hs . Assume that |0〉c
corresponds to the path in which Alice is before Bob and |1〉c to the path with the
reverse order. If we initially prepare the particle in the state, say, ρcsin = |�〉〈�|csin ,
where |�〉csin = (α|0〉c + β|1〉c)|ψ〉s , at the end it will be in the state ρcsf i = |�〉〈�|csf i ,
where |�〉csf i = α|0〉cUs

BU
s
A|ψ〉s + β|1〉cUs

AU
s
B |ψ〉s .

Now, if a third party, Charlie, performs an operation on the joint systemHc ⊗ Hs

subsequently, he can distinguish this situation from a situation in which the order
between the operations of Alice and Bob is conditioned on a classical bit (e.g.,
modeled by the initial state of the control qubit being in a ‘classical’ mixture of the
two possible values, |α|2|0〉〈0|s + |β|2|1〉〈1|s , instead of a coherent superposition)
by performing a suitable measurement. In fact, it was shown in Ref. [7] that by
exploiting such a coherent strategy, Charlie can perfectly distinguish whether a pair
of unitariesU A andUB commute or anti-commute by using each of the unitaries only
once, which is impossible if the order of the unitaries is conditioned on a classical bit.
An experimental demonstration of this effect was recently reported in Ref. [18] and in
even more recently by the same lab in Ref. [19] where one of the unitaries is replaced
by a measure-and-prepare operation. However, both experiments, as they use the
same setup for the quantum switch, suffer from some conceptual and experimental
loopholes. This will be discussed on the later on, in Chap. 3, where we present an
implementation of the quantum switch without such experimental loopholes.

In the general case, the operations of Alice and Bob need not be unitary and may
have more possible outcomes. Every such operation, however, can be seen as the
result of a joint unitary on the input system and a local ancilla, such that the outcome
remains stored on the local ancilla in a particular basis. Similarly, any local ‘choice’
of operation can be modeled by a larger unitary on all systems involved plus a local
ancilla that carries the ‘choice’ variable. Thus, we can have Alice and Bob perform
general operations in this setup by purifying their local operations to unitaries and
deferring the reading of their outcomes to the end of the whole experiment. (Note
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that in order not to destroy the superposition, the whole experiments needs to be
performed coherently, which may be unrealistic for local operations performed by
macroscopic devices, unless the operations are unitaries, but is in principle compat-
ible with standard quantum mechanics).

In our example,wewill takeα = β = 1√
2
, andwewill assume, as described above,

that Charlie can operate on both the path and OAMdegrees of freedom of the particle
after it has interacted with Alice and Bob. In other words, Charlie’s input system will
be four dimensional, and we will formally decompose it into two qubit subsystems,
HCI = HCC

I ⊗ HCs
1 , where HCC

I and HCs
1 correspond to the path and OAM degrees

of freedom, respectively. Since Charlie operates last, we do not need to introduce
a non-trivial output system for him, i.e., his output system will be assumed one-
dimensional. The process matrix relating the local experiment of Alice, Bob, and
Charlie in this setup can easily be obtained by describing the experiment in the form
of a circuit in which Alice’s operation is represented by two controlled operations at
two possible times, such that one of them would act nontrivially depending on the
state of the control qubit (left diagram on Fig. 2.8). Using the CJ representation of
the channels connecting the different boxes, we obtain

W AI AO BI BOCI = |W 〉〈W |AI AO BI BOCI , (2.61)

where

|W 〉AI AO BI BOCI = (|0〉Cc
I |ψ〉AI |�+〉AO BI |�+〉BOCs

1 + |1〉Cc
I |ψ〉BI |�+〉BO AI |�+〉AOCs

1 )/
√
2,

(2.62)

with |�+〉 = |00〉 + |11〉. It can be verified that W AI AO BI BOCICO contains only
allowed terms. The process matrix is a rank-one projector and hence cannot be
written as a convex mixture of different process matrices. We now check if it is
causally separable: if it is, it must be of one of the types W (A,B)�C , W (B,C)�A, or
W (A,C)�B . Each of these matrices is compatible with signaling from the set of two
parties to the third one. However, the above process matrix does not fall into any
of the three categories: it allows signaling to any of the parties, from some of the
other parties. For example, there can be signaling from Alice and Bob to Charlie,
as different unitary operations yield different input states for Charlie and therefore
different probabilities of the local outcomes for some measurements of Charlie. To
see that we can have signaling from Alice to Bob and vice-versa, first notice that
Charlie has a trivial output and hence he cannot signal to anyone. This means that
we have a well-defined reduced process for Alice and Bob, whose process matrix is

W AI AO BI BO = 1

2
(|ψ〉〈ψ|AI ⊗ |�+ 〉〈�+|AO BI ⊗ 1BO + |ψ〉〈ψ|BI ⊗ |�+ 〉〈�+|BO AI ⊗ 1AO ).

(2.63)

This is a causally separable bipartite process matrix describing an equally weighted
probabilistic mixture of two fixed-order processes: one where Alice precedes Bob
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(Alice receives the input state |ψ〉, her output is sent to Bob through the identity
channel (whose CJ matrix is |�+〉〈�+|AO BI ), and his output is discarded; and one
process where Bob precedes Alice (with the same mechanism as before with the
roles of the parties interchanged). Clearly, since in the first situation there is an ideal
channel from Alice to Bob, there can be signaling from Alice to Bob in this process,
and similarly from Bob to Alice. Therefore, the process matrix given by Eqs. (2.61)
and (2.62) is not causally separable.

However, the quantum process arising from this setup is causal. This follows from
the fact that the reduced process for Alice and Bob is causally separable (and hence
causal). Specifically, the bipartite process is written as

W AB = 1

2
W B�A + 1

2
W A�B = 1

2
W B|A

[A]I ◦ W A + 1

2
W A|B

[B]I ◦ W B (2.64)

and the tripartite process is simply

W ABC = WC |AB ◦ W AB = 1

2
WC |AB ◦ W B|A

[A]I ◦ W A + 1

2
WC |AB ◦ W A|B

[B]I ◦ W B

(2.65)
which is the form of a causal process. This observation suggests how the tripartite
joint probabilities of the local outcomes can be simulated without using the quantum
switch, if we extend the input and output systems of the parties. In particular, it is
clear that the joint probabilities of Alice and Bob can be obtained by a mixture of
fixed-order circuits (their process is causally separable) which can be realized by
a classical switch, where the control bit is classical. To simulate the tripartite joint
probabilities, all that is needed is that Charlie receives the information about the
local settings and outcomes of the parties so that he makes the right measurements to
produce the particular necessary p(oC |s A, oA, sB, oB, sC). Therefore, in addition to
the qubit system that goes through Alice and Bob, there has to be another system on
which each party writes down their setting and outcome (right diagram on Fig. 2.8),
and this system at the end goes to Charlie. Like this, the process can be simulated
using a classical mixture of causal configurations.

By a similar argument we can construct a large class of multipartite processes
that are causal but not causally separable. Consider a situation in which the order
of all but one of the parties is conditioned on the state of a control system prepared
in superposition, and subsequently all systems on which these parties have operated
together with the control system are sent into the input of the last party. If all systems
were initially prepared in a pure state and all channels are unitary ones, the process
matrix will have rank 1, and unless the process is fixed-order causal, it cannot be
causally separable. Yet, it will be causal because the reduced process for all parties
except for the last onewill be causally separable (and hence causal) due to the fact that
whenwe trace out the control system, the process for these partieswould be a classical
probabilistic mixture of fixed-order processes. Since the full process is obtained by
multiplying the conditional process of the last party with the reduced process of the
previous ones, the full process is causal. It can be simulated using classical control
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Fig. 2.8 The left diagram
illustrates the circuit with
quantum control. The dark
circle on the control bit
represents a control gate for
Alice, and the white circle is
also a controlled gate with a
bit flip before. The right
diagram illustrates a
simulation of the same
correlations with a
classically controlled circuit
using input and output
systems of larger
dimensions, denoted by the
extra green system [1]

of the order of the parties by allowing larger input and output systems by which the
settings and outcomes of all other parties are made available to the last one.

2.4.4 Activation of Non-causality with Shared Entanglement

Synopsis: We present an example of a tripartite causally separable process matrix
(giving rise to causal process), whose process becomes non-causal when two parties
are supplied with entangled ancillas. This example is surprising and counterintuitive,
because the process that corresponds to an entangled input state for two parties is
causal—it yields non-signaling correlations.

We show here a rather peculiar property of causality, causal separability and sup-
plied entanglement in the case of quantum processes. Remember that one of the key
assumptions in the process matrix framework is that every quantum process can be
extended by supplying the parties with ancillas in an arbitrary quantum state, yield-
ing another valid process. Even if the ancillary input systems are entangled, they
would correspond to a non-signaling process compatible with any causal configura-
tion. Therefore, intuitively one would expect that adding such an input joint state to
some parties embedded in a quantum causal process would result again to a causal
process. We shown that this is not the case and refer to this effect as activation of
non-causality.

We provide a particular example of a tripartite causal quantum process matrix,
which we construct inspired by the non-causal bipartite process matrix presented in
Ref. [2],
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W AI AO BI BO = 1

4
(1AI AO BI BO + 1√

2
σAI
z σBI

x σBO
z + 1√

2
σAO
z σBI

z ), (2.66)

which can violate a causal inequality. The input and output systems of all parties
are two-level systems, except the input of Charlie which is trivial. The process we
construct has the following form in the σ basis

W AI AO BI BOCO = 1

4
(1AI AO BI BOCO + 1√

2
σAI
z σBI

z σBO
z σCO

x + 1√
2
σAO
z σBI

z σCO
z ).

(2.67)

This process matrix has the right normalization (TrW AI AO BI BOCO = dAO dBO dCO ),
contains only the allowed type of terms (listed in Table2.3) and is positive semidef-
inite. The latter can be seen through the fact that relative to the {|0〉, |1〉} basis of the
input system of B, BI (which is the eigenbasis of σz with corresponding to eigenval-
ues +1 and −1 respectively, σz = |0〉〈0| − |1〉〈1|) we can write the process matrix
as

W AI AO BI BOCO = |0〉〈0|BI ⊗ 1

4
(1AI AO BOCO + 1√

2
σAI
z σBO

z σCO
x + 1√

2
σAO
z σCO

z ) +
(2.68)

|1〉〈1|BI ⊗ 1

4
(1AI AO BOCO − 1√

2
σAI
z σBO

z σCO
x − 1√

2
σAO
z σCO

z ). (2.69)

We notice that the operator 1
4 (1

AI AO BOCO + 1√
2
σAI
z σBO

z σCO
x + 1√

2
σAO
z σCO

z ) is
identical to that in Eq. (2.66) (except that in the place of BI we have CO ) and
that operator was shown to be positive semidefinite. The operator 1

4 (1
AI AO BOCO −

1√
2
σAI
z σBO

z σCO
x − 1√

2
σAO
z σCO

z ) is the same as the one just discussed except that the
nontrivial σ terms have a minus sign. This operator can be obtained from the first
one by a unitary transformation (e.g., one that takes σCO

x to −σCO
x and σCO

z to −σCO
z ,

such as σCO
y ).

This process matrix describes a causally separable process. To see this, notice
that it permits no signaling from Alice and Bob to Charlie, and so it can be formally
written asW A,B,C = W A,B|C ◦ WC . Now see that conditionally on any operation of
Charlie, which is most generally described by a CPmap with a CJ operator MCO ≥ 0
(remember that Charlie has a trivial input system which means that its dimension is
one), Alice and Bob are left with a bipartite process with process matrix

W AI AO BI BO

MCO
= TrCO [(MCO ⊗ 1AI AO BI BO ) W AI AO BI BOCO ]/Tr[MCO ]. (2.70)

This process matrix is a linear combination of the identity and terms containing only
σz operators on different subsystems, i.e., it is diagonal in a given local basis (the
{|0〉, |1〉} basis for each subsystem). It was shown in Ref. [2] that all such bipartite
process matrices are causally separable (though we remark that the same was shown
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not to hold for multipartite processes [10]). Imagine now that we supply Bob and
Charlie with the entangled input state 1

2 |�+〉〈�+|C ′
I B

′
I , which yields the new process

W AI AO BI B ′
I BOC ′

I CO = W AI AO BI BOCO ⊗ |�+〉〈�+|C ′
I B

′
I

2
. (2.71)

If Charlie performs the identity unitary channel from C ′
I to CO in his laboratory

(which means that he sends out his part of the entangled state), which is described by
the CJ operator MC ′

I CO = |�+〉〈�+|C ′
I CO , Alice and Bob are left with the bipartite

process

W AI AO BI B ′
I BO = 1

4
(1AI AO BI B ′

I BO + 1√
2
σAI
z σBI

z σ
B ′
I

x σBO
z + 1√

2
σAO
z σBI

z σ
B ′
I

z ).

(2.72)

To see this, notice that the fact that taking the partial trace of W AI AO BI B ′
I BOC ′

I CO

with the operator |�+〉〈�+|C ′
I CO is formally identical (up to a normalization) to a

local projection in a quantum-state teleportation protocol [40]. Remember that if
we start with a prepared |�+〉 state on a bipartite system, send one part of it to a
party which performs a joint projective measurement on that part and another system
which he possesses (all systems have same dimensions), then the state of the other
part of the prepared entangled state is ‘teleported’ to the system the party has initially
possessed. This means that the operation of Charlie amounts to ‘teleporting’ the part
of the matrix on CO , onto B ′

I . Note that the notion of teleportation is defined for
quantum states and not for process matrices, and that protocol requires a correcting
operation on the receiver’s side, as the above projection, which does not require a
correction, cannot be accomplished deterministically [40]. Now see that the process
matrix (2.72) is similar to (2.66), except that the local operators on BI in the non-
trivial sigma terms in Eq. (2.66) are now on B ′

I , and there is a σz operator on BI in
each such term.

This process matrix is non-causal, because it allows Alice and Bob to obtain any
correlations that they could obtain using the non-causal process matrix (2.66). This
can be done as follows. Alice always performs the same operations that she would
perform with the process matrix (2.66). Bob performs a measurement on system BI

in the {|0〉, |1〉} basis. If he obtains the outcome |0〉, then it is as if Alice and Bob
share the process matrix (2.66) with B ′

I in the place of BI . He will then apply any
operation from B ′

I to BO that he would apply from BI to BO with the process matrix
(2.66), which yields the same joint probabilities for Alice and Bob as those with the
process matrix (2.66). If Bob obtains the outcome |1〉 for his measurement on BI ,
then it is as if Alice and Bob share the same process matrix as (2.66) with B ′

I in
the place of BI but with a minus sign in front of each of the two nontrivial σ terms.
This process matrix is equivalent to the previous one under a change of basis by the

unitary σ
B ′
I

y . Therefore, Bob can simply apply from B ′
I to BO the same operations he

would apply from B1 to BO with the process matrix (2.66) but transformed by the
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unitary transformation σ
B ′
I

y . Again, this yields the same joint probabilities for Alice
and Bob as with the process matrix (2.66). In particular, Alice and Bob can use this
strategy to violate the causal inequality described in Ref. [2]. The process matrix
(2.72) is thus non-causal, and so is the tripartite process matrix (2.71).

It is not known at present whether non-causal processes can be realized in agree-
ment with the known laws of quantummechanics without resorting to post-selection.
We have seen in the previous subsection that we can realize causally non-separable
processes, which are nevertheless causal. Here, we see that certain causal processes
can become non-causal when supplied with shared entanglement. The ability to
extend a process with shared entanglement seems natural to expect for any exper-
imentally realizable process. From this perspective, this result suggests that either
non-causal processes may be possible, or that there may exist causally separable
processes, as defined above, that cannot be realized in practice.

2.4.5 Extensibly Causal and Extensibly Causally Separable
Quantum Processes

Synopsis: Given the effect of activation of non-causality (the fact that some causal
quantum processes can become non-causal by supplying the parties with entangled
ancillas), we divide further the causal and causally separable quantum processes into
those that can and cannot become non-causal, or causally non-separable respectively,
by supplying the parties with entangled ancillas. The quantum processes that cannot
beactivated in thisway are called extensibly causal and extensibly causally separable,
respectively.

The activation of non-causality suggests that we distinguish those processes that
can and cannot lose their property of causality by supplying the partieswith entangled
ancillas. Hence we propose the following definitions about the processes that retain
their property of causality (by which we mean that they remain causal or remain
causally separable) under any extension of their inputs.

Definition 2.4.2 (Extensibly causal quantum process) A quantum process that is
causal and remains causal under extension with input systems in an arbitrary joint
quantum state is called extensibly causal.

Definition 2.4.3 (Extensibly causally separable (ECS) quantum process) A quan-
tumprocess that is causally separable and remains causally separable under extension
with input systems in an arbitrary joint quantum state is called extensibly causally
separable (ECS).

The process matrices of these types of processes will also be referred to as exten-
sibly causal and ECS process matrices, respectively.

Note. These definitions can be formulated analogously for more general process
theories that permit composite local systems.
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The natural question to ask now is whether these classes of processes correspond
to physical situations that we can describe, and whether these subsets constitute the
whose set (for example are all causal processes extensibly causal?)

Observation 1: In the bipartite case, all causally separable processes are extensibly
causally separable. To see this, think of adding an arbitrary joint input ancilla to a
process matrix of the form (2.58); we obtain a process matrix of the same form.
Therefore the notion of activation of causal non-separability can be thought to be a
multipartite characteristic in the case of quantum processes.

Observation 2: Extensibly causal and extensibly causally separable processes are
not equivalent in general. Indeed, the causally non-separable tripartite process (2.61)
based on the quantum switch, which is causal, is also extensibly causal. This is
because our proof that it is causal applies also if the parties share entangled input
ancillas.

Comment: Recently, Feix, Araújo, and Brukner gave an example of a bipartite
quantum process that is causal but not extensibly causal [41], proving that causality
and extensible causality are different in the bipartite case too. While in the tripartite
case we have seen that extensible causality is also different from causal separability,
it is currently an open problem whether the same holds in the bipartite case.

In the next subsection, we derive a characterization of the tripartite ECS pro-
cesses in terms of conditions on the form of the process matrix which generalize the
conditions in the bipartite case (Eqs. (2.56), (2.58)).

2.4.6 Structure of Extensibly Causally Separable Process
Matrices in the Tripartite Case

Synopsis: We derive necessary and sufficient conditions for a tripartite process to
be extensibly causally separable. These are conditions on the form of the process
matrix. They differ from the bipartite case as now the dynamical causal order plays a
role. The result aimed to give way to a similar form for the general n-partite problem,
although we found no simple extension. The obtained result for the tripartite case is
also useful for the general characterization of this set of processmatrices, for example
when checkingwhether a given processmatrix belongs to this set or when looking for
so called causal witnesses (something that we discuss in the next Chapter). Similarly
to finding an entanglement witness where it is necessary to define the space of
separable states, when finding a causal witness we provide a definition for the space
of extensibly causally separable process matrices.

For conveniency, we rewrite the definition of causally separable processes.

Definition 2.4.4 (Causally separable quantumprocess) A quantumprocess is called
causally separable if and only if it can be decomposed in the canonical form given by
Theorem 3 (which we re-write below for conveniency), with the additional condition
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that each process on the right-hand side of Eq. (2.73) is a quantum process. (Note
that since the canonical form is defined iteratively, the latter is understood to hold
for all conditional processes in this definition.)

Theorem (Canonical causal decomposition) A causal process for n parties is one
that can be written in the (generally non-unique) form

W1,··· ,n
c =

n∑

i=1

qiW (1,··· ,i−1,i+1,··· ,n)�i , qi ≥ 0,∀i,
n∑

i=1

qi = 1, (2.73)

with

W (1,··· ,i−1,i+1,··· ,n)�i = W1,··· ,i−1,i+1,··· ,n|i
c ◦ W i , (2.74)

where the (n − 1)-partite conditional process W1,··· ,i−1,i+1,··· ,n|i
c is either trivial

(when n = 1) or has the form (2.73) for every value of the event in i .

There is an immediate consequence of the definition of the causally separable
process, for the structure of a causally separable process matrix. Given that the prob-
abilities of a quantum process are linear in the process matrix, a causally separable
process matrix can be written in the form

W 1I 1O ···nI nO
cs =

n∑

i=1

qiW
(1,··· ,i−1,i+1,··· ,n)�i , 0 ≤ qi ,∀i,

n∑

i=1

qi = 1, (2.75)

where W (1,··· ,i−1,i+1,··· ,n)�i is a process matrix which describes a process
W (1,··· ,i−1,i+1,··· ,n)�i with the property

W (1,··· ,i−1,i+1,··· ,n)�i = W1,··· ,i−1,i+1,··· ,n|i
cs ◦ W i , (2.76)

where for n > 1 the conditional process W1,··· ,i−1,i+1,··· ,n|i
cs is a causally separable

process for every value of the event in i , and for n = 1 it is the trivial process. Note
that the requirement that W (1,··· ,i−1,i+1,··· ,n)�i is a quantum process that permits no
signaling from the rest of the parties to i guarantees that both the reduced and the
conditional process on the right-hand side of Eq. (2.76) are valid quantum processes
(this can be seen from the no signaling condition in Proposition 2.4.2).

Aim: In the case of two parties (note that any monopartite process is trivially
causally separable and ECS), we have seen that the process matrices W A�B , whose
processes obey W A�B = W A|B

cs ◦ W B , are those that can be written in the form
W A�B = WBI BO AI ⊗ 1AO , and the general form of bipartite causally separable pro-
cess matrices is (2.58). As noted already, this is also the general form of the bipartite
ECS process matrices. Our goal is to obtain a similar condition for tripartite ECS
processes.
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Form of theW (A,B)�C : Let us consider a process of the formW (A,B)�C = W A,B|C
cs ◦

WC , where WC is a monopartite quantum process and W A,B|C
cs is a bipartite condi-

tional process which is causally separable for each possible event in C . Notice that
since there should be no signaling from Alice and Bob to Charlie in such a process,
its process matrix, which we will denote W AI AO BI BOCICO

(A,B)�C
, can at most contain the

types of terms listed in Table2.4. These are the terms that do not permit signaling
from Alice and Bob to Charlie according to Proposition 2.4.2.

We will first obtain necessary and sufficient conditions for such a process
(W (A,B)�C ) to be ECS. Note that we have not proven yet that a general ECS process
matrix should have the form (2.75) where each of the terms W (1,··· ,i−1,i+1,··· ,n)�i is
itself ECS. This will be shown later.

Every event in Charlie’s laboratory is described by some CPmapwith CJ operator
MCICO ≥ 0, Tr MCICO ≤ dCI . Conditionally on such an event, Alice and Bob are left
with the process matrix

W AI AO BI BO

MCI CO
= TrCICO [W AI AO BI BOCICO

(A,B)�C
(1AI AO BI BO ⊗ MCICO )]/p(MCICO ), (2.77)

where p(MCICO ) is the probability for the eventMCICO to occur inCarlie’s laboratory
(given the appropriate setting), which is independent of the operations performed by
Alice and Bob since the process involves no signaling fromAlice and Bob to Charlie.
More specifically,

p(MCICO ) = Tr[WCICO MCICO ], (2.78)

where

WCICO = TrAI AO BI BO [W AI AO BI BOCI CO

(A,B)�C
(
1AI AO BI BO

dAO dBO

⊗ 1CICO )] (2.79)

is the reduced process of Charlie. The requirement that the conditional process for
Alice and Bob is causally separable means that for all MCICO ,

W AI AO BI BO

MCI CO
= qMCI CO W

A�B

MCI CO
+ (1 − qMCI CO )W

B�A

MCI CO
, (2.80)

where W
A�B

MCI CO
and W

B�A

MCI CO
are valid process matrices compatible with A � B and

B � A, respectively, and qMCI CO ∈ [0, 1] (all objects generally depend on MCICO ).
For convenience, we will write this simply in the form

W AI AO BI BO

MCI CO
= 1AO ⊗ W̃ AI BI BO

MCI CO
+ 1BO ⊗ W̃ AI AO BI

MCI CO
, (2.81)

where W̃ AI BI BO

MCI CO
≥ 0 and W̃ AI AO BI

MCI CO
≥ 0, and the whole operator is a valid process

matrix, i.e., it contains only allowed terms and is properly normalized.
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Initial result (sufficiency): A sufficient condition for this to hold is that

W AI AO BI BOCICO

(A,B)�C
= 1AO ⊗ W̃ AI BI BOCICO + 1BO ⊗ W̃ AI AO BI CI CO , (2.82)

where W̃ AI BI BOCI CO ≥ 0 and W̃ AI AO BI CI CO ≥ 0 are some positive semidefinite oper-
ators, whose sum gives a properly normalized quantum process matrix containing
only the types of terms listed in Table2.4. An important remark is that each of
W̃ AI BI BOCICO ≥ 0 and W̃ AI AO BI CI CO ≥ 0 may contain terms that are forbidden in a
process matrix, such as terms of type CO , but these terms have to cancel in the sum.
Indeed, we have

TrCICO [W AI AO BI BOCICO

(A,B)�C
(1AI AO BI BO ⊗ MCICO )]/p(MCICO ) =

W AI AO BI BO

MCI CO
= 1AO ⊗ W̃ AI BI BO

MCI CO
+ 1BO ⊗ W̃ AI AO BI

MCI CO
,

∀MCICO ≥ 0,

(2.83)

where

W̃ AI BI BO

MCI CO
= TrCICO [W̃ AI BI BOCICO (1AI BI BO ⊗ MCICO )]/p(MCICO ) ≥ 0, (2.84)

W̃ AI AO BI

MCI CO
= TrCICO [W̃ AI AO BI CI CO (1AI AO BI ⊗ MCICO )]/p(MCICO ) ≥ 0, (2.85)

and it is easy to see that sinceW AI AO BI BOCICO

(A,B)�C
contains only the types of terms listed

in Table2.4, W AI AO BI BO

MCI CO
can only contain allowed terms. To verify this, notice that

if a process matrix has the types of terms listed in Table2.4, then for every CP map
of Charlie (that has at most terms of the type CI ,CO ,CICO ) the remaining process
will have the terms that are of the same type as in that Table, but with CI ,CO ,CICO

removed. The remaining terms are those allowed in a valid bipartite process matrix.
The above analysis is for the process matrix of a process of the formW (A,B)�C =

W A,B|C
cs ◦ WC , which is by definition a causally separable process, and hence the

process matrix is causally separable. It is immediate to see that this condition is
sufficient also for the process matrix W AI AO BI BOCICO

(A,B)�C
to be ECS. This is because if

W AI AO BI BOCICO has the above properties, any extension W AI AO BI BOCICO ⊗ ρA′
I B

′
I C

′
I ,

where ρA′
I B

′
I C

′
I is a density matrix, also has these properties.

Initial result (necessity): We now show that the form (2.82) is also a necessary
condition for an ECS process matrix compatible with (A, B) � C , which we will
denote by W AI AO BI BOCICO

ecs;(A,B)�C
. To see this, imagine that we supply Alice and Charlie

respectively with ancillary systems A′
I and C

′
I of dimension dC1dC2 each, which are

prepared in the maximally entangled state |φ+〉〈φ+|A′
I C

′
I /(dC1dC2), where |φ+〉 =∑dC1dC2

i=1 |i〉A′
I |i〉C ′

I . Conditionally on Charlie performing a suitable operation and
obtaining an outcome with CP map MCICOC ′

I ∝ |φ+〉〈φ+|(CICO )C ′
I , Alice and Bob
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will be left sharing a process matrix which, up to a normalization factor, has an
identical form to that of W AI AO BI BOCICO

ecs;(A,B)�C
but with A′

I in the place of CICO . The

requirement that this is a causally separable bipartite process matrix means that
W AI AO BI BOCICO

ecs;(A,B)�C
must be of the form (2.82).

Final result: So far, we have only obtained necessary and sufficient conditions for
an ECS process matrix W AI AO BI BOCICO

ecs;(A,B)�C
compatible with (A, B) � C (and similarly

for permutations of A, B, C). We next prove the general case.

Proposition 2.4.3 Every tripartite ECS process matrix can be written in the form

W AI AO BI BOCICO
ecs = q1W

AI AO BI BOCICO

ecs;(A,B)�C
+ q2W

AI AO BI BOCICO

ecs;(A,C)�B
+ q3W

AI AO BI BOCICO

ecs;(B,C)�A
,

qi ≥ 0, ∀i = 1, 2, 3,
3∑

i=1

qi = 1,

(2.86)
where W AI AO BI BOCICO

ecs;(A,B)�C
contains only terms from Table 2.4 and has the form (2.82),

and analogously for W AI AO BI BOCICO

ecs;(A,C)�B
and W AI AO BI BOCI CO

ecs;(B,C)�A
by permutation.

The fact that this form is sufficient for the process matrix to be ECS is obvious
because if this is true for each of the individual terms, any extensionW AI AO BI BOCICO

ecs

⊗ ρA′
I B

′
I C

′
I = q1W

AI AO BI BOCICO

ecs;(A,B)�C
⊗ ρA′

I B
′
I C

′
I + q2W

AI AO BI BOCICO

ecs;(A,C)�B
⊗ ρA′

I B
′
I C

′
I +

q3W
AI AO BI BOCI CO

ecs;(B,C)�A
⊗ ρA′

I B
′
I C

′
I is also causally separable. The fact that it is neces-

sary can be seen as follows. Let us choose ρA′
I B

′
I C

′
I which is a tensor product of three

bipartite maximally entangled states of the type used in the ‘teleportation’ argument,
one shared between Alice and Bob, the other one between Alice and Charlie, and the
third one between Bob and Charlie. For this particular ancilla, it must be possible to
write the extended process in the form

W
AI AO BI BOCI CO
ecs ⊗ ρ

A′
I B

′
I C

′
I = q1W

AI AO BI BOCI CO
1 ⊗ ρ

A′
I B

′
I C

′
I

+ q2W
AI AO BI BOCI CO
2 ⊗ ρ

A′
I B

′
I C

′
I + q3W

AI AO BI BOCI CO
3 ⊗ ρ

A′
I B

′
I C

′
I ,

(2.87)
whereW AI AO BI BOCI CO

1 ⊗ ρA′
I B

′
I C

′
I is causally separable and compatiblewith (A, B) �

C , W AI ···CO
2 ⊗ ρA′

I B
′
I C

′
I is causally separable and compatible with (A,C) � B, and

W AI ···CO
3 ⊗ ρA′

I B
′
I C

′
I is causally separable and compatible with (B,C) � A. But for

each of these terms, we can perform the ‘teleportation’ argument exploiting the
respective maximally entangled bipartite state contained in ρA′

I B
′
I C

′
I , proving that

W AI ···CO
1 has the form we obtained for W AI ···CO

ecs;(A,B)�C
, W AI ···CO

2 has the form we

obtained for W AI ···CO

ecs;(A,C)�B
, and W AI ···CO

3 has the form we obtained for W AI ···CO

ecs;(B,C)�A
.

This completes the proof.
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2.4.7 Processes Realizable by Classically Controlled
Quantum Circuits

Synopsis: In this section we find a class of extensibly causally separable (ECS)
processes that are physically realizable. We define a general model in which parties
perform black-box operations. A prior measurement determines which party is first.
After the operation of the first party, their outcome and the outcome of a subsequent
measurement by the circuit determines which party is second, and so on. We make
two claims: any ECS process can be implemented by this model and that any process
obtained by this model is ECS. We show that both claims hold in the bipartite case.
In the multipartite case, we show that the second claim is true and provide good
reasons to conjecture that the first claim is also true.

In this section we are interested in a class of processes that have a physical real-
ization and show its relation with the class of extensibly causally separable processes
(ECS). In the bipartite case the experimental realization of an ECS process is trivial:
most generally it will be a probabilistic mixture of causally-ordered quantum circuits
for two parties. For the multipartite case, the answer is not simple. Here we show
that a particular class of processes which can be realized in practice, referred to as
classically controlled quantum circuits, belong to the class of ECS processes and we
conjecture that it in fact gives rise to all ECS processes (this is true in the bipartite
case).

The general protocol: The main idea our considered process should capture is the
fact that the outcome of some operations can affect the order in which future opera-
tions occur. We define such a process to have the following general realization. We
consider a number of parties N , whose operations can be thought of, most generally,
as black-box operations. In that case, although we may not have access to measure-
ment outcomes of those black-box operations, it is nonetheless possible that the order
of subsequent operations in the circuit may depend indirectly on the event inside the
black box. This is because the order can be decided based on a measurement on the
output system.

We begin with some sufficiently large quantum system, or register, in a given
quantum state. We perform a quantum operation on it and conditionally on the out-
come we determine which party will be first, which subsystem of the register will be
the input of that party, and what operation will be applied after that party. These deci-
sions will be according to some rule that has been specified before the experiment.
We then apply the black-box operation of the first party on the decided subsystem,
perform the decided operation after it, and conditionally on that outcome and the
outcome of the party it is decided which party will be second, and so on. This con-
tinues until all N parties have been called (only once). This model gives rise to valid
quantum processes, as we can formally write the operation of each box and calculate
the joint probabilities for the outcomes of all boxes using standard quantummechan-
ics and see that they are linear and non-contextual functions of the respective CP
maps of the parties. The same holds if we introduce ancillary systems prepared in
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an arbitrary quantum state and allow the parties to perform their operations in the
extended system of their inputs and parts of them.

Aim: We are interested in the following two claims, which we investigate in the
bipartite and multipartite case: any ECS process can be implemented by this model,
and any process obtained by this model is ECS.

Bipartite case (both claims): In the case of two parties, we know that any (exten-
sibly) causally separable process can be implemented in this way: it most generally
corresponds to embedding at random the local experiments of the parties, A and B,
into one of two possible fixed circuits (with alternate order of the parties), which can
be chosen conditionally on the outcome of a measurement on some state at the very
beginning of the experiment. That measurement alone is enough to determine the
total order of the parties, as once the first party is determined the secondwill just have
to be the other party. Therefore the first claim holds. To see that the second claim also
holds, notice first that the process is independent of the operation applied after the last
party (there are no more parties whose order might be conditioned on that operation
or any other succeeding operation). Also, the outcome of any operation after the first
party can be ignored since there is only one choice of the last party, i.e. that operation
can be assumed to be deterministic. Finally, the outcomes of the operation before the
first party (the ones that determine who is first and therefore which fixed circuit will
be implemented) can be grouped into two coarse-grained outcomes (one for each
fixed circuit). Therefore, the process realized by such a procedure is a probabilistic
mixture of the processes of two fixed-order circuits, which is the claimed form.

Multipartite case (claim 2): In the case of more than two parties, we can easily
show that the second claim holds. First notice that depending on the outcome of the
first measurement (whose probability is independent of any future operations and
therefore the settings of the parties), there will be one party that is first and hence the
subsequent process that results from the process that results from the protocol can
involve no-signaling from the rest of the parties to that first party. Therefore, there
is a well-defined reduced process for the first party. Taking into account all possible
outcomes of the first measurement, the whole process will be a probabilistic mixture
of processes where one party is first and there is a well-defined reduced process for
that party. This is what Eq. (2.75) describes. Now conditionally on the outcome of
the first party, the procedure for the rest of the parties looks analogous, so Eq. (2.76)
holds too, i.e. the process is causally separable. The argument remains even if the
parties are supplied with ancillas in any quantum state, and therefore, any process
realized by classically controlled quantum circuits is extensibly causally separable.

Multipartite case (claim1):We conjecture that the first claim also holds.We provide
some partial considerations that support this conjecture, based on the restrictions on
the allowed terms in the process matrix (that gives rise to processes) realized by
classically controlled quantum circuits in the tripartite case. We will focus on the

question of implementing an ECS process matrix of the type W
(A,B)�C
ecs , which has

the form (2.82) (compatible with (A, B) � C), by a classically controlled quantum
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Fig. 2.9 Realization of an
ECS process compatible with
(A, B) � C by a classically
controlled quantum circuit

circuit. Implementability of a process matrix of this kind is both necessary and suf-
ficient for the implementability of a general tripartite ECS process matrix (mixtures
of different (X,Y ) � Z ) as described in Proposition 2.4.3, since by using a suitable
measurement at the beginning we can select with the right probability which of the
three process matrices in the mixture on the right-hand side of Eq. (2.86) to realize
subsequently.

The protocol: The protocol, depicted in Fig. 2.9, begins with some quantum system
prepared in a state ρ. After Charlie operates on some subsystem CI , we apply some
operation, sayM and conditionally on the outcome we determine who is second, on
what subsystem they act, and what operation will be applied after that, sayN . Note
that without loss of generality we can assume that the subsystem onwhich the second
party acts is specified from the beginning. This is because any subsystem of the same
dimension can bemapped onto the designated subsystem by a unitary transformation
that can be part of the definition of the present operation just before that second party.
Also, without loss of generality we can assume that this operation (M) has only two
outcomes, since we can group the outcomes into those for which Alice would be
next, and those for which Bob will be next. Also, we can assume that the operation
that takes place after the next party (N ), conditionally on the fine-grained outcome of
the operation before that party (M) within the same group of outcomes, will always
be the same one for the one group of outcomes, and another one for the other group
of outcomes. That is, conditionally on the outcome of the operation that takes place
after Charlie (M), the next party is determined, and the operation after that party is
also determined (N ), that is performed on the combination of the output system of
that party and some subsystem on which the classical information about the outcome
of the operation (before that party) is copied. This is something that we can include
as part of the definition of the operation after Charlie (M). After occurrence of the
operation after the second party (N ), there is only one possibility for the last party,
and so the operation after the second party can be regarded as deterministic (as a
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CPTP map) from all systems to the input of the last party. However, we do leave
the possibility that this last operation (N ) may be defined conditionally on the first
outcome (of M), rather than absorb the conditioning on that outcome into a larger
operation. This is to avoid complications arising from the fact that the different parties
may have input and output systems of different dimensions. The outlined procedure
is sketched in Fig. 2.9, where the two possible sequences of transformations arising
from the two possible outcomes of the first operation (M) are depicted in blue and
green respectively. The two CPmaps corresponding to the outcomes of the operation
Mmust sum up to a CPTP map, since they correspond to the two possible outcomes
of a standard quantum operation.

The protocol as process matrices: We remind that any process realized by this pro-
tocol is extensibly causally separable and we conjecture that any extensibly causally
separable process can be realized by this protocol. Each of the two possible devel-
opments, depicted as blue and green maps and parties, is a non-deterministic linear
supermap [46], that maps the local CP maps of the parties into the real numbers,
which is the probability for the particular sequence of events. This can be written
in a similar form as the formula for the probabilities of the outcomes of the parties
in a valid process, except that in the place of the process matrix we would have an
operator W̃ AI AO BI BOCICO

1 ≥ 0 and W̃ AI AO BI BOCICO
2 ≥ 0 for each possible develop-

ment of the protocol, which generally would not be a valid process matrix. However,
their sum, W̃ AI AO BI BOCICO

1 + W̃ AI AO BI BOCICO
2 = W AI AO BI BOCICO

cs;(A,B)�C
, would be a valid

process matrix realized through this classically controlled quantum circuit.

Core of the conjecture: For a causally separable processmatrix,W AI AO BI BOCICO

cs;(A,B)�C
, the

operators in the sum W̃ AI AO BI BOCICO
1 + W̃ AI AO BI BOCICO

2 = W AI AO BI BOCICO

cs;(A,B)�C
, obey

certain restrictions in the type of non-trivial terms they can contain, that arise from
the restriction that W AI AO BI BOCICO

cs;(A,B)�C
is a valid process matrix. We will show that the

operator arising from each of the two possible developments of the protocol obeys
the same restrictions on the types of allowed non-trivial terms. This suggests that
each possible development might be described precisely by each of those terms,
which suggests that the conjecture that any ECS process matrix can be realized by a
classically controlled quantum circuit could be true.

Consider now just one of the two possible developments, say, the blue one, in
which Alice is second and Bob is last (labeled by 1). Since Bob is last and his output
system is discarded, we have W̃ AI AO BI BOCICO

1 = 1BO ⊗ W̃ AI AO BI CI CO
1 (similarly, in

the other case we have W̃ AI AO BI BOCICO
2 = 1AO ⊗ W̃ AI BI BOCICO

2 ). Notice that if the
transformation N1,CPT P after Alice was not required to be CPTP but could be any
CP map for a suitable choice of the initial state ρ and of the CP maps M1,CP and
N1,CP we could realize any W̃ AI AO BI CI CO

1 ≥ 0. This means that there would be no
restrictions on the types of non-trivial terms it contains. To see this, notice that we
can choose the density operator ρCIC ′

proportional to W̃ AI AO BI CI CO
1 , where the part of

W̃ AI AO BI CI CO
1 on AI AO BICO is stored on C ′. Then we can ‘teleport’ this part of the

operator onto its desired subsystem by using CP maps M1,CP and N1,CP that have
CJ operators proportional to projectors on maximally entangled states as needed to
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realize the ‘teleportation’ (the traces of these CP maps can be chosen to ensure the
overall trace of the resultant operator W̃ AI AO BI CI CO

1 ). However, we cannot realize this
scheme if the transformation after Alice is trace-preserving, N1,CPT P .

Theparticular constraints onwhat kindof W̃ AI AO BI CI CO
1 canbeobtained, given that

the transformation after Alice is trace-preserving, lies on the fact that the CJ operator
of N1,CPT P cannot contain terms of type AO , A′AO , and A′ (non-trivial terms on
the input of the map). Considering the calculation of W̃ AI AO BI CI CO

1 based on the CJ
operators of ρ, M1,CP and N1,CPT P , we see that the lack of these types of terms in
N1,CPT P implies the lack of any termwith a nontrivialσ on AO in W̃ AI AO BI CI CO

1 . This
is the only constraint on the possible types of terms in W̃ AI AO BI CI CO

1 . These allowed
types of terms are exactly those allowed in the operator W̃ AI AO BI CI CO in Eq. (2.82).
Similarly, we see that the allowed terms in W̃ AI BI BOCICO

2 (Bob second, Alice last)
are the same as those in W̃ AI BI BOCICO in Eq. (2.82). These are the terms allowed in
a process matrix compatible with Charlie being first, except that both W̃ AI AO BI CI CO

1

and W̃ AI BI BOCICO
2 may contain terms of type CO . The fact that these terms should

cancel in the sum 1BO ⊗ W̃ AI AO BI CI CO
1 + 1AO ⊗ W̃ AI BI BOCICO

2 = W AI AO BI BOCICO

cs;(A,B)�C

follows from the fact that this is a valid ECS process, and can be seen to be ensured
by the requirement that M1,CP + M2,CP is CPTP.

The only restriction on the operators 1BO ⊗ W̃ AI AO BI CI CO
1 and 1AO ⊗

W̃ AI BI BOCICO
2 imposed by this model, apart from their positive-semidefiniteness and

the normalization of their sum, seems to be the absence of the forbidden terms in
each of them, as well as of the forbidden terms in their sum. If this is indeed the case,
then any ECS process could be realized by a suitable classically controlled quantum
circuit. A strictly rigorous proof requires showing that apart from the lack of these
forbidden terms, there can be no other hidden constraints on the pair of operators
1BO ⊗ W̃ AI AO BI CI CO

1 and 1AO ⊗ W̃ AI BI BOCICO
2 (which, of course, are guaranteed to

be properly normalized). One way of doing it could be by exhibiting an explicit
constructive procedure for implementing any given ECS process, which would be of
additional interest on its own right.

2.5 Conclusion

Main result: In this chapter, we proposed a rigorous definition of causality in the
process framework [2]. This definition is the first one to take into account the fact that
the causal order between a set of local experiments may be random and correlated
with the settings of some of them.

Multipartite causal processes: Multipartite processes that obey our definition of
causality, referred to as causal, and thus permitting such ‘dynamical’ causal order,
have a particular structure which we derived. It is an iteratively formulated canonical
formexpressed in terms of reduced and conditional processes (well-definedprocesses
conditioned on future and past events respectively). Specifically, a causal process is
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one that has a causal decomposition in which each term is a process compatible with
one party being first; the latter can be written as a multiplication of a monopartite
process of the first party, and a conditional process of the rest of the parties, given
the first. This conditional process has to be also causal. This form can be interpreted
as an unraveling of the process into a sequence of local experiments, which agrees
with the condition that the order and outcomes of the experiments prior to a given
step is independent of the settings of future experiments. Defining causal processes
serves as a tool to investigate non-causal processes in a theory independent scenario,
as the probabilities of a causal process form a polytope whose facets define causal
inequalities. Their violation by a given process can be interpreted as demonstrating
the non-existence of causal order between the local experiments.

Quantum case: multipartite causal and causally separable processes: In the
quantum process framework, where the local experiments are described by stan-
dard quantum mechanics, we investigated the relationship between two concepts:
causality and causal separability. The latter concept was introduced in Ref. [2] for
the bipartite case. We proposed a definition of causal separability for the multipartite
case, which reduces to the one for the case of two parties, based on the canonical form
of causal processes. Specifically, we defined a causally separable quantum process as
a causal quantum process that has a causal decomposition such that the different pro-
cesses in each term of the decomposition are themselves valid quantum processes.
We showed the set of causally separable quantum processes is strictly within the
set of causal quantum processes, by exhibiting an example of a tripartite process
that is causal but not causally separable. Recently, the same was shown to hold also
in the bipartite case [41]. We also gave an example of a causally separable (and
hence also causal) process that becomes non-causal when extended by supplying
the parties with an entangled ancillary state. Based on this observation, we proposed
two extended notions of causality and causal separability called extensible causal-
ity and extensible causal separability, which require preservation of the respective
property under extending the process with entangled input ancillas. Although they
are different in the general case, the sets of causally separable and ECS processes
are equivalent in the bipartite case. We showed that the sets of extensibly causal and
causally separable processes are different in general via the same tripartite example
that we used to show that causal and causally separable processes are different. We
did not investigate whether the same separation holds in the bipartite case. However,
it was recently shown that causal and extensibly causal processes are different in the
bipartite case too [41].

Results on extensibly causally separable processes: Finally, we derived a simple
characterization of the ECS quantum processes in the tripartite case in terms of
conditions on the form of their process matrices, which extends the conditions for
(extensibly) causally separable process matrices in the bipartite case.We conjectured
that the set of ECS processes is equivalent to the processes that can be obtainedwithin
the paradigm of classically controlled quantum circuits and provided evidence for
this based on analysis of the restrictions that this paradigm imposes on the tripartite
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multipartite quantum processes 

causal 

ECS 

classically 
controlled  
q. circuits 

causally separable 

extensibly causal 

(a) Multipartite case.

bipartite quantum processes 

causal 

causally separable 
=  

extensibly causally separable 
(ECS) 

= 
classically controlled 

quantum circuits  

extensibly causal 

(b) Bipartite case.

Fig. 2.10 A Venn diagrammatic sketch of our present knowledge of the different sets of quantum
processes that we have introduced, in the general multipartite case and in the bipartite case. The
white segments are non-empty. The gray segments are sets for which at present we do not know if
they are empty or not [1]

process matrices it can create. The ECS processes and the processes obtainable by
classically controlled quantum circuits are equivalent in the bipartite case.

Summary on the classification of processes: Our present understanding of the
relation between all these different classes of quantum processes is illustrated for the
general multipartite case and for the bipartite case in Fig. 2.10a and b, respectively.
An obvious open problem is whether the gray segments in these figures are empty
or not.

Open questions: Another problem of fundamental importance is to understand the
class of quantum processes that are physically admissible in agreement with the
known laws of quantum mechanics (see [48] for a relevant claim), and where this
class stands with respect to all of the above classes. Are the processes that can
be realized by classically controlled quantum circuits all the physically admissible
causally separable processes? Where does the class of quantum-controlled quantum
circuits stand?At present, this is themost general operationally feasible paradigm that
we are aware of and all known processes realizable through it seem to be extensibly
causal. Could the class of extensibly causal processes be equivalent to quantum-
controlled quantum circuits? Did the reader really read the whole chapter? And most
intriguingly, are there physically admissible non-causal processes?

The implications of our results are not limited to the subject of indefinite causal
order in quantum mechanics. They can be useful also for the problem of inferring
causal structure [28], both in classical and quantum theory [47]. The subject of
causal inference concerns many disciplines, from philosophy and machine learning
to sociology and medicine. Our formulation of a background-independent opera-
tional notion of causality that admits dynamical causal relations opens the road to
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a more general paradigm for causal inference than the one assuming deterministic
underlying variables and static causal relations [28]. The decomposition of causal
processes derived here implies constraints on the possible causal orders compatible
with given setting-outcome correlations. This can serve as a basis for developing
more sophisticated tools for causal inference for the case of dynamical causal order
for an arbitrary number of parties.
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Chapter 3
Witnessing Causal Nonseparability:
Theory and Experiment

Theory Section

3.1 Back Story

This first part of the chapter is based on Ref. [1]. At the time, we knew very well
the process matrix formalism as presented in the original paper [2]. The observation
that the set of causally separable process matrices is convex, was the start of this
work. This is important, because of the well-known hyperplane separation theorem
that is greatly used for entanglement witnesses: since the state of separable states
define a convex set, then, by the hyperplane separation theorem, there is a hyperplane
separating any non-separable state from the convex set. The hyperplane corresponds
tomeasurements on the non-separable state, to witness its nonseparability. Using this
theorem in the space of process matrices means that there is a hyperplane separating
a causally non-separable process matrix from the convex set of causally separable
ones. The hyperplane in this case corresponds to operations to be performed by the
parties in order to witness causal nonseparability.

Butwhywouldwe pursue this project, as it seems to be simply amathematical the-
orem applied in the process matrix framework, much like entanglement witnesses is
the result of the application of the framework to quantummechanics? The answer lies
in the experimental realizations. Entanglement witnesses are extremely useful when-
ever entanglement needs to be certified. Using this simple mathematical theorem, an
experimenter instead of having to perform informationally complete measurements
for a full-state tomography to verify entanglement, an entanglement witness requires
a smaller amount of measurements. Similarly, in an experimental realization of a
process matrix, when the interest is whether it is separable or not, full process matrix
tomography requires informationally complete operations of all parties; whereas
causal separability witnesses restrict the amount of the parties operations. Hence, we
had the tools and the motivation to pursue this project.
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3.2 Introduction

As we have seen in Chap.2, using the process matrix framework, it is in princi-
ple possible to imagine situations where the causal order of quantum operations is
not fixed in advance, whether it is probabilistic, dynamical or even indefinite [2,
3]. The motivation to study the exotic situations of indefinite causal order comes
from a foundational point of view for general probabilistic theories [4–7], but also
shown recently to pave the way for novel quantum architectures with computational
advantages [8]. The main example of the latter is the technique called “quantum
switch”, analyzed in Chap.2, in Sect. 2.4 (as a causally nonseparable process matrix)
whose computational advantage has been proved [9, 10] and whose experimental
implementation has been realized [11, 12].

This chapter (the theory section) is based on the publication inRef. [1] and is about
applying the hyperplane separation theorem to process matrices, to create witnesses
of causal non separability. In other words, we develop a device-dependent (we will
see later what that means) way to detect causal nonseparability of a process matrix.
Before we go into technicalities, let us present the basic ideas. Think of a circle drawn
in some (x, y) coordinate space. Then it is easy to say that for every point (x ′, y′)
that is not inside or in the boundaries of this circle, there must be a straight line that
separates the circle from this point. The same idea can be applied to a sphere with
the difference that now the line would be replaced by a two-dimensional plane. For a
d-dimensional sphere there will be a hyperplane separating the sphere from any outer
point. Finally, we can even think this further and possibly make a claim that the same
idea applies to any convex set (instead of a sphere) at an arbitrary dimensional space:
for any point outside a convex set there is a hyperplane separating this point from
the set. Fortunately this claim has been already proven and it is called ‘hyperplane
separation theorem’ [13].

This beautiful theorem, depicted in Fig. 3.1 is applied to the space of quantum
states: since the set of separable states form a convex set, for every nonseparable
state there exists a hyperplane separating the set from the given state. Translating
this geometrical result into equations, we get that for every nonseparable state ρnsep,
there exist an operator S such that Tr(Sρnsep) < 0 while Tr(Sρsep) ≥ 0 (the zero is
arbitrary). The operator S is the geometrical description of the separating hyperplane.
Now remember the Born rule: the probability of an outcome i out of a set of possible
outcomes for a given quantum measurement described by the POVM elements {Ei }
is given by Tr(Eiρ). Hence, we can see the hyperplane S as some operator which
we apply to our state and it can correspond to a single or a mixture of measurement
operators. Now we see that the theorem states that for every nonseparable state there
exists an operator that we can apply to the state and if the result is smaller than 0
that proves its nonseparability. From an experimental perspective this is great news;
it states that quantum state tomography is no longer needed to verify nonseparability
and this is particularly useful in the case of entanglement which is usually what we
need to verify—in this case the object S is called entanglement witness. Moving to
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Fig. 3.1 Sketch of the
hyperplane separation
theorem: for every point
outside the convex set, there
must be a hyperplane
separating the point from the
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the space of process matrices, since the set of separable process matrices defines a
convex set, we can define later, by analogy, a causal witness.

As any member of the police can tell you, for a witness to exist it is one thing;
for a witness to be found it is a different one. Entanglement witnesses are hard to
find. The good news is that causal witnesses (in the cases we studied) can always
be found efficiently. We studied the general bipartite case and a particular tripartite
case. This is because of the peculiarity of the general tripartite and multipartite case
studied in Chap.2, based on Ref. [3], which makes the problem more intricate. Back
to the good news, the problem of finding a causal witness can be formulated as
a SemiDefinite Program (SDP) which, using convex optimization techniques, can
be solved efficiently. This means that, upon an experimental implementation of a
causally nonseparable process matrix, (if it lies within our studied cases) we can find
a causal witness (the set of operations the parties have to perform) to prove its causal
nonseparability. This is particularly interesting in light of the two recent experimental
realizations of a tripartite causally nonseparable process matrix in Refs. [11, 12] and
in our own implementation which will be discussed later in this chapter.

3.3 Mathematical Characterization of Valid and Causally
Separable Processes

Let us review briefly the process matrix formalism, and move to the characteriza-
tion of valid bipartite and tripartite process matrices in terms of linear constraints
on the process matrix. We are considering scenarios where experimenters (parties)
are located inside closed laboratories A, B, . . . and perform experiments on incom-
ing systems AI , BI , . . ., obtain outcomes i, j, . . . and send out outgoing systems
AO , BO , . . . assigned to Hilbert spacesHX , of dimension dX , with X being the cor-
responding system. No assumption is made on the causal order of the laboratories.
The operation of each lab is described by a Completely Positive (CP) map from the
input to the output which yields the outcome i , MA

i , isomorphic to its CJ matrix
MAI AO

i . The joint probability for a specific set of local CP maps to be realized by the
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parties A, B · · · is then given by the following linear function

p(MA
i ,MB

j , · · · |{MA
i }, {MB

j }, · · · )
= Tr

[
W AI AO BI BO ···

(
MAI AO

i ⊗ MBI BO
j ⊗ · · ·

)]
, (3.1)

with {MX
i } being the collection of the possible CPmaps for party X which sum up to

a CPTP map,MX = ∑
j MX

j representing a quantum instrument, whose CJ matrix
MXI XO satisfies the normalization condition TrXO MXI XO = 1XI . For conveniency,
we define two maps:

xW = 1x

dx
Trx W (3.2)

[1−x]W = W − xW, (3.3)

where x is any subsystem in W . Then the condition for the CJ matrix MXI XO to
represent a trace preserving map is written as XO M

XI XO = 1XI XO/dXO .

Bipartite case: In the Appendix A, we provide the characterization of the set of valid
bipartite process matrices. The result is that an operator W ∈ AI ⊗ AO ⊗ BI ⊗ BO

is valid if and only if W ≥ 0, TrW = dAO dBO and W ∈ LV2 , where L is the linear
subspace defined by the projector

LV (W ) = AOW + BOW − AO BOW − BI BOW + AO BI BOW − AI AOW + AI AO BOW.

(3.4)
In terms of simple individual conditions on the process matrix, we have that a valid
process matrix must satisfy

W ≥ 0

TrW = dAO dBO

BI BOW = AO BI BOW

AI AOW = AI AO BOW

W = BOW + AOW − AO BOW.

(3.5)

Now let usmove to the characterization of the causally separable processmatrices.
As we have seen in Chap.2 and in Ref. [2] they have the form

Wcsep = qW A≺B + (1 − q)WB≺A, (3.6)

with q ∈ [
0, 1

]
, where each term is a valid process matrix compatible with one party

being in the causal past of the other and both compatible with the parties being
causally independent (A||B). These terms must satisfy some constraints, as we have
already seen in Chap.2, namely they have identity on the output system of the last
party. Using the notation introduced in Eq. (3.3), these constraints can be expressed as
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W A≺B = BOW
A≺B

W B≺A = AOW
B≺A.

(3.7)

Note that W A||B will satisfy both constraints. Hence, ignoring for conveniency the
normalization constraint, a valid process matrix is causally separable if and only
if it admits the decomposition (3.6) where each term satisfies the corresponding
constraint (3.7). Hence, the set of causally separable process matrices is a convex
cone, which we denote as Wcsep. A process matrix that cannot be decomposed as
in (3.6) is called causally nonseparable.

Tripartite case: In the case of three parties, the conditions that define the subspace
of valid process matrices is obtained in a similar fashion.

XOW = 0

XOYOW = 0

XOYO ZOW = 0

[1−XO ] TrYI YO W = 0

[1−XO ] TrYI YO Z I ZO W = 0

(3.8)

with X,Y, Z = A, B,C , which define a linear subspace denoted as LV . Hence,
an operator W ∈ AI ⊗ AO ⊗ BI ⊗ BO ⊗ CI ⊗ CO is valid if and only if W ≥ 0,
TrW = dAO dBO dCO and W = LV (W ) as defined in the Appendix.

Let us now move to the tripartite causally separable process matrices, but with
the extra condition that the output system of one party, say C , is trivial, i.e. dCO = 1.
This means that the party cannot signal to any other, and can therefore be considered
as last. This leaves us with two possible causal configurations, i.e. A ≺ B ≺ C and
B ≺ A ≺ C . A tripartite causally separable process matrix with the constraint that
Charlie’s output is trivial, can then be written as a convex combination of process
matrices compatible with the two causal configurations.

W 3C
csep = qW A≺B≺C + (1 − q)WB≺A≺C , (3.9)

with q ∈ [
0, 1

]
. Ignoring again the normalization constraint, this defines a convex

cone, which we denote as W3C
csep, with the 3C indicating that we are in the special

case where Charlie’s output is trivial (or last).
A process matrix compatible with each causal configuration should satisfy the

following three constraints. The intuition behind them is that, for example, for A ≺
B ≺ C , (a) there is identity on the output ofC , (b) upon tracing outC , we get identity
on the output of B, and (c) tracing out B,C we get identity on the output of A. (These
constraints are equivalent to defining a ‘quantum comb’ [14, 15], an object similar
to the process matrix for a fixed causal order between the parties.)
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[1−CO ]W A≺B≺C = 0

[1−BO ] TrCICO W A≺B≺C = 0

[1−AO ] TrBI BOCICO W A≺B≺C = 0

[1−CO ]WB≺A≺C = 0

[1−AO ] TrCICO W B≺A≺C = 0

[1−BO ] TrAI AOCICO W B≺A≺C = 0.

(3.10)

These three conditions for each process matrix, define a linear subspace with pro-
jectors L A≺B≺C and LB≺A≺C such that

W A≺B≺C = L A≺B≺C(W A≺B≺C) and WB≺A≺C = LB≺A≺C(WB≺A≺C) (3.11)

The set of tripartite causally separable process matrices is a closed convex set, which
we denote as W3C

csep.
Now that we have our formal characterizations of bipartite causally separable

process matrices (Wcsep) and tripartite ones with one party having a trivial output,
(W3C

csep), we are ready to formulate causal witnesses for these cases. Namely, we
will be able to detect causal nonseparability in the general bipartite case and in the
tripartite case where Charlie’s output is trivial.

3.4 General Bipartite Causal Witnesses

We begin with the definition: we call a Hermitian operator S a causal witness (or
witness for brevity) if

Tr(SWcsep) ≥ 0 (3.12)

for every causally separable process matrixWcsep. We remind the hyperplane separa-
tion theorem [13] applied in our case: the set of causally separable process matrices
is closed and convex; therefore for every causally nonseparable process matrix there
exists a witness (defined just above) such that Tr(SWnsep) ≤ 0. Since this opera-
tor actually witnesses the nonseparability of Wnsep we can call it a Witness for this
Wnsep, to make it distinct from the set of all witnesses (see Fig. 3.2). We proceed to
the mathematical characterization of the set of causal witnesses, in terms of linear
constraints they should satisfy. This will allow us to formulate our problem as an
SDP. In the bipartite case we remind that Wcsep = qW A≺B + (1 − q)WB≺A. Then
the above equation is equivalent to

Tr(SW A≺B) ≥ 0, ∀W A≺B (3.13a)

Tr(SW B≺A) ≥ 0, ∀WB≺A. (3.13b)
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Fig. 3.2 The set of causally
separable process matrices
and a witness: for every
causally nonseparable
process matrix, there must be
a witness separating its point
from the set of causally
separable process matrices Wcsep

Wcnsep
witness for WcnsepS

Let us focus on Eq. (3.13a). Remember the first of the Eq. (3.7), W A≺B =BO W A≺B ,
meaning that a valid bipartite process matrix W with identity on the output of B is
compatible with a causal configuration A ≺ B. Then we can write

Tr(S BOW ) ≥ 0 ∀W ∈ LV , W ≥ 0. (3.14)

Remark that the map XW := 1X TrX W is self-adjoint, which means that 〈X S,W 〉 =
〈S, XW 〉, and considering the trace as a Hilbert-Schmidt inner product, 〈S,W 〉 =
Tr(S,W ∗), we have that

Tr(S BOW ) = Tr(BO SW ). (3.15)

For the right-hand side to be non-negative for all valid processmatrices, it is sufficient
that BO S ≥ 0, and similarly AO S ≥ 0 is sufficient for the Eq. (3.13b) to hold. Hence,
for S to be a witness it is sufficient that

BO S ≥ 0, and AO S ≥ 0. (3.16)

Note that adding an operator S⊥ that belongs to the orthogonal complement L⊥
V of

LV (remember W ∈ LV ) to any witness gives another valid witness, since Tr[(S +
S⊥)W ] = Tr(SW ) for any validW ∈ LV . It turns out that this suffices to completely
characterize the set of causal witnesses, as we state in the following theorem.

Theorem A Hermitian operator S ∈ AI ⊗ AO ⊗ BI ⊗ BO is a (causal) witness if
and only if S can be written as

S = SP + S⊥ (3.17)

where each term is a Hermitian operator such that

BO SP ≥ 0, AO SP ≥ 0, LV (S⊥) = 0 (3.18)

The proof of this theorem is in the Appendix C of the relevant paper [1]. This
theorem provides a characterization of the set of causal witnesses, which is a closed
convex cone which we denote as S.
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Note that the operator S⊥ can be arbitrarily chosen as it does not change the value
Tr(SW ), for instance it can be

S⊥ = LV (SP) − SP (3.19)

so that S = LV (SP). This restricts the set ofwitnesses to the subspace of valid process
matrices LV . Hence, these witnesses have the following characterization.

Corollary 4 A Hermitian operator S ∈ LV is a witness if and only if there exists a
Hermitian operator SP ∈ AI ⊗ AO ⊗ BI ⊗ BO such that S = LV (SP), BO SP ≥ 0,
and AO SP ≥ 0.

This set of causal witnesses is also a closed convex cone, and we denote as
SV = S ∩ LV .

Now that we have the characterization of the set of causal witnesses in the general
bipartite case we are ready to formulate the problem of checking causal nonsepara-
bility of a W and finding a Witness for it, as an SDP [16].

3.5 Tripartite Causal Witness for a Special Case

In a previous section, we characterized the set of causally separable tripartite process
matrices, for the particular case where one party is last (has a trivial output system).
For these cases, we can find a witness, i.e. a Hermitian operator S, such that

Tr(SW 3C
csep) ≥ 0 (3.20)

for every causally separable process matrixW 3C
csep, with the 3C indicating the special

case where one party has a trivial output system (a condition that holds for the
whole section). SinceW3C

csep is a closed convex set, there must be a witness such that
Tr(SW 3C

nsep) < 0, for every causally nonseparable W 3C
nsep.

From Eq. (3.9) we have the explicit decomposition W 3C
csep = qW A≺B≺C + (1 −

q)WB≺A≺C with each term satisfying the set of constraints of Eq. (3.10) or, in terms
of projectors, W A≺B≺C = L A≺B≺C(W A≺B≺C) and WB≺A≺C = LB≺A≺C(WB≺A≺C ).
Similarly to the bipartite case, the characterization of the set of causal witnesses,
denoted as S3C is the following

Theorem A Hermitian operator S ∈ AI ⊗ AO ⊗ BI ⊗ BO ⊗ CI ⊗ CO, dCO = 1 is
a causal witness if and only if S can be written as

S = SP
ABC + S⊥

ABC = SP
BAC + S⊥

ABC ,

SP
ABC ≥ 0, L A≺B≺C(S⊥

ABC) = 0

SP
BAC ≥ 0, LB≺A≺C(S⊥

BAC) = 0
(3.21)
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with L A≺B≺C and LB≺A≺C being the projectors onto subspaces defined in Eq. (3.10).
These restrictions define the set of causal witnesses for this special tripartite case,
which we denote as S3C .

The proof of this theorem is given in the Appendix G of the relevant paper [1].

3.6 SDP for Witnessing Causal Nonseparability

We are now ready to formulate the SDP; given the complete characterization of the
convex cone of the causal witnesses, and that of the valid and causally separable
process matrices, it will be able to identify if a given W is causally separable or not
(for the cases we studied above: the general bipartite and one particular tripartite).
If it is, the SDP will provide the explicit decomposition in causally ordered process
matrices. If the inputW is causally nonseparable, then it provides the causal Witness
for it.

There are two ways to formulate our problem which we call ‘primal’ and ‘dual’
SDP. The primal SPD is asking the following: how much noise can I add to the
(possibly nonseparable) process matrix W before it becomes causally separable?
There are different ways to represent this noise which in a practical implementation
would depend on the experimental components used to create the process matrix
(gates, channels, etc.). Here we will consider the case of ‘white noise’, represented
by a process matrix 1◦ = 1/dI , where dI is the product dAI dBI · · · . This white-noise
process matrix represents a situation where all parties receive a joint input system in
a maximally mixed state. Therefore, for a given W , we consider the ‘noisy’ process
matrix

W (r) = 1

1 + r
(W + r1◦) (3.22)

and ask the value of r such that it is causally separable (see Fig. 3.3). Ignoring
the normalization of W (r)—remember that the cone of causally separable process
matrices Wcsep was defined without the normalization constraint—we define the
following optimization problem

minimize r

suchthat W + r1◦ ∈ Wcsep
(3.23)

As we have seen, the characterization of the cone Wcsep yields linear constraints
on the operatorW + r1◦. Therefore, this optimization problem defines an SDP prob-
lem. The solution to this problem is the optimal (minimum) value of r = r∗ and an
explicit decomposition W (r∗) as a convex combination W (r∗) = W A≺B + WB≺A,
of non-normalized process matrices compatible with one of the two possible causal
orders. Any positive value of r∗ would mean that the input W is nonseparable. In
other words, if we need to add any amount of 1◦ to make the input process matrix
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Fig. 3.3 Optimal witness
with respect to ‘white’
noise: The value r∗ is the
amount of white noise 1◦
that needs to be added to
Wcnsep to make it causally
separable Wcnsep

Wcnsep(r∗)
1

r∗

S

causally separable, then it means that it is causally nonseparable. Equation (3.23) is
the formulation of the ‘primal’ problem.

We now present the ‘dual’ (to the ‘primal’) problem.

minimize Tr(SW )

such that S ∈ SV and Tr(S1◦) = 1
(3.24)

We ask to minimize the value Tr(SW ), such that the operator S is a causal witness
(belonging to the closed convex cone of causal witnesses SV = S ∩ LV ). We restrict
our search toSV , instead ofS, because sometimes it may be the case that in practice it
is more convenient: optimizing over the larger space S can make some solvers unsta-
ble. However, if one wishes to make such a search, the result of the above SDPwould
be equivalent to both spaces as the values Tr(SW ) and Tr(S1◦) would remain the
same by adding a term S⊥ ∈ L⊥

V to the witness S. A constraint on Tr(S1◦) is needed
to avoid obtaining an optimal value of −∞ for the minimized value Tr(SW ). We
chose Tr(S1◦) = 1 because this makes the output of the dual SDP to be a meaningful
value, as we will see just below.

The optimal solution of the above dual problem is S∗ and it is a causal Witness
if the minimized value of Tr(SW ) is negative. From the Duality Theorem for SDP
problems [16], we have that the solutions of the primal and dual problem are related
through the expression

r∗ = −Tr(S∗W ). (3.25)

To understand the value of this relationship, let us imagine that the input process
matrix W is causally nonseparable. Now recall that r∗ is the minimum amount of
1◦ that needs to be added to the input W to make it causally separable, and that
Tr(S1◦) = 1. Then we have that
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Tr(S∗W (r)) = Tr(S∗W )

1 + r
+ r Tr(S∗1◦)

1 + r
= − r∗

1 + r
+ r

1 + r
< 0 ∀r < r∗.

(3.26)
This means that for all r < r∗ (the process matrix W (r) is causally nonseparable),
Tr(S∗W (r)) would still be negative and thus S∗ would still detect the causal nonsep-
arability of W (r) and would still be a Witness for it. This means that this Witness is
optimal for W (r), that is for W that is subjected to white noise, see Fig. 3.2.

Note that we can define other noise models, other that the above ‘white noise’
model. For example we can replace the above process1◦ with another process matrix
W ◦ that for some reason the experimentalist is competing against, when trying to
implement the desired process matrix W . Then in the above dual problem the nor-
malization constraint would be Tr(SW ◦) = 1 and one can show, as in Ref. [1], that
as long as W ◦ is in the interior of Wcsep the SDP would still be solved efficiently,
and that the optimal solutions of the primal and dual problem would still satisfy
Eq. (3.25).

Due to the fact that the SDPs are providing the optimal witness, in the general
case of some noise model, this value r∗ or −Tr(S∗W ) gives us a ‘measure’ of the
nonseparability of the process matrix W . We define the random robustness of W as
its resistance to white noise 1◦

Rr (W ) = −Tr(S∗W ), (3.27)

where the optimal witness is the one obtained with respect to white noise, that is,
from an SDP as written above. In the case where the white noise model is the right
one for some particular implementation of the given W , the random robustness is a
good measure of the causal nonseparability of W . However, one has to be careful
because if the noise model does not fully capture the experimental imperfections,
then it is not guaranteed that the random robustness is a good measure.

3.7 Implementing a Causal Witness in the Lab

In this section we are interested in practical scenarios, where we have implemented
in the lab a causally nonseparable process matrix for a number of parties, and we
wish to prove its causal nonseparability through a causal Witness. We will see in the
next chapter that this is exactly our goal for a specific experimental implementation
for a particular causally nonseparable process matrix, but let us first lay down the
basics for such a task.

First of all, what does it mean to ‘measure’ a Witness? From the definition of
the Witness we know that, for a given causally nonseparable Wnsep, we have that
Tr(SWnsep) < 0 whereas Tr(SWcsep) ≥ 0 for all causally separable Wcsep. But how
can we verify experimentally that the process matrix Wnsep that (we think) we have
implemented in the lab is indeed causally nonseparable?
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Let us remind some basics of the process matrix formalism. The scenario is: we
have a set of parties performing operations, whose outcomes are correlated through
their environment, represented by the process matrix. Each operation, say that of
party A, is described by a Completely Positive (CP) map, that maps their input AI

to their output AO system, yielding an outcome i , MA
i , represented by their Choi-

Jamiołkowski (CJ) operator MAI AO
i , whose collection represents the settings of each

party. We have that the joint probability for a set of parties to realize these maps,
given their settings, is given by

p(MAI AO
i , MBI BO

j , · · · |{MAI AO }, {MBI BO }, · · · ) = Tr[(MAI AO
i ⊗ MBI BO

j ⊗ · · · )W AI AO BI BO ···)]
(3.28)

Back to our task of measuring our Witness, we see that since we have to prove that
for a given Wnsep, Tr(SWnsep) < 0 all we have to do, is to find a way to express the
witness as

S =
∑
i, j ···

αi, j,···(MAI AO
i ⊗ MBI BO

j ⊗ · · · ). (3.29)

Each term in this sum corresponds to the experimentally accessible probabilities

p(MAI AO
i , MBI BO

j · · · |{MAI AO }, {MBI BO }, · · · ) (3.30)

and it will be such that

∑
i, j,···

αi, j,··· p(MAI AO
i , MBI BO

j · · · |{MAI AO }, {MBI BO }, · · · )) = Tr(SWnsep) < 0.

(3.31)
Therefore, experimentally measuring the operator S and proving its sign is negative,
proves the causal nonseparability of Wnsep.

So now our task is to decompose the witness as a weighted sum of experimentally
accessible operations for the parties,whichwould of course vary in each experimental
implementation of theWnsep. For instance, it may be the case that some of the parties
can only perform unitary operations, as opposed to measure-and-prepare operations.
In that case, we can insert such a restriction to the SDP and ask to find a witness
such that it can be decomposed as a weighted sum of unitary operations for the
parties. In particular, we modify the ‘dual’ problem (3.24) and replace SV by the
set SU ⊂ S, where SU denotes the space of causal witnesses, for which some of
the parties perform unitary operations. The price to pay is that by restricting to this
subspace we may not obtain the optimal witness, or even a witness at all, because
such a witness will not be able to witness all causally nonseparable process matrices.
However, restricting our search for a witness in such a way is a powerful tool as we
shall see in the next sections.
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3.8 Witness for the Quantum Switch

The quantum switch, as we have seen in Chap.2, is a technique which makes the
order in which two quantum gates are realized to be conditioned on the state of a
quantum bit [8]. In particular, imagine that two parties (that perform the quantum
gates), A and B, each receive an input system which we call the target bit, perform
unitary operations,UA,UB respectively, and send the system out. The order in which
the parties perform their unitaries is conditioned on a control bit: if its state is |0〉,
the target bit undergoes the unitary UA before the unitary UB , if the state is |1〉, the
order of the unitaries is reversed (later there will be a nice Figure for this). After the
operations of these two parties, whatever their order were, there is a third party C
that receives the control and target bit.

Seen through the process matrix formalism, the circuit of the quantum switch
is a tripartite causally nonseparable process matrix. Interestingly, the original idea
was developed as a novel quantum circuit architecture that goes beyond the stan-
dard quantum circuit model [8]—indeed the quantum switch cannot be represented
as standard quantum circuit where the order of operations occur in well-defined
time-slots. However, when it was later re-examined in Refs. [1, 3], it was the only
example of a tripartite causally nonseparable process matrix that has a direct physical
implementation, as shown in Refs. [11, 12] and as we will see in the next section.

Now that we have a nice tripartite causally nonseparable process matrix with a
physical implementation, we can search for a Witness for it. Recall that in order to
write an SDP towitness the causal nonseparability of an n−partite processmatrix, we
need the characterization of the set of n−partite causally separable process matrices.
This is why, in a section above, we characterized the cone of tripartite causally
separable process matrices in the special case where one party is always last (having
a trivial output).

3.8.1 Optimal Witness Through SDP

As seen in Chap.2, Sect. 2.4 the process matrix of the quantum switch is

W AI AO BI BOCI
s = |W 〉〈W |AI AO BI BOCI , (3.32)

where

|W 〉AI AO BI BOCI = (|0〉Cc
I |ψ〉AI |�+〉AO BI |�+〉BOCs

I + |1〉Cc
I |ψ〉BI |�+〉BO AI |�+〉AOCs

I )/
√
2,

(3.33)

where Cc
I is the control bit that is input to C , and Cs

I is the target bit or system, that
C receives after the operations of A and B. Here, we will consider the above process
matrix, but with the system Cs

I traced out. This is because the remaining process
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matrix is still causally nonseparable and it reduces its dimensions, which becomes
crucial to the computational solvers of the SDP. Note that the output system of
Charlie has dimension 1. Note also that if we trace out the only system of C that
we consider, Cc

I , the remaining process matrix becomes causally separable—it is
that extra party in the future of A and B that makes the process matrix causally
nonseparable. Therefore, the process matrix we end up with, is

Wswi tch = TrCs
I
(W AI AO BI BOCI

s ). (3.34)

Then the primal SDP, as formulated in (3.23), is written as

minimize r

such that Wswi tch + r1◦ ∈ W3C
csep,

(3.35)

where W3C
csep is the cone of causally separable tripartite process matrices with the

condition that one party’s output is trivial, as defined by Eqs. (3.9) and (3.10).
The dual problem is written as

minimize Tr(SWswi tch)

suchthat S ∈ S3C and Tr(S1◦) = 1
(3.36)

where S3C is the set of causal witnesses defined for this case of three parties in
Eq. (3.21). Here we could use S3C

V = S3C ∩ LV but it turns out that both cases are
solved quite fast. Also, although S∗ and S3C

V give a different witness, its general
robustness and visibility remain the same.

We solved the primal and dual problem and obtained the random robustness of
the quantum switch (its resistance to white noise)

Rr (Wswi tch) = r∗
swi tch ≈ −1.57603 (3.37)

Another way to estimate this result is in terms of the ‘visibility’ v which is related
to the value r as in

v = 1

1 + r
(3.38)

Then the noisy quantum switch

Wswi tch(v) = vWswi tch + (1 − v)1◦, (3.39)

is causally nonseparable for all v > v∗
swi tch = 1

1+r∗
swi tch

≈ 0.3882.

Curious unpublished result: As we have discussed, we only considered a special
tripartite case: one party has a trivial output, or in other words, one party is last,
say C . We did so because in this case we can write the form of a causally separable
process matrix in a simple form: it is a mixture of process matrices compatible with
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one of the causal configurations A ≺ B ≺ C or B ≺ A ≺ C . Another reason why
we restricted to this case is because when we search for a witness for the quantum
switch, we can make that assumption since the quantum switch does have Charlie
always last.

However, as we have seen in Chap.2, the general form of a tripartite (extensibly,
we comment on that later) causally separable process matrix is the following

Wecsep = q1Wecsep;(A,B)�C + q2Wecsep;(A,C)�B + q3Wecsep;(B,C)�A,

qi ≥ 0, ∀i = 1, 2, 3,
3∑

i=1

qi = 1,
(3.40)

where W
ecsep;(A,B)�C

is a valid process matrix compatible with (A, B) � C and has

the form

Wecsep;(A,B)�C = 1AO ⊗ W̃ AI BI BOCICO + 1BO ⊗ W̃ AI AO BI CI CO , (3.41)

where W̃ AI BI BOCICO ≥ 0 and W̃ AI AO BI CI CO ≥ 0 are some positive semidefinite
operators, whose sum gives a properly normalized process matrix. Analogously,
by permutation, we obtain the form of forW

ecs;(A,C)�B
andW

ecs;(B,C)�A
. Recall that

an extensibly causally separable process matrix is one that is causally separable and
remains so under extension of the input of the parties with entangled ancillas. We
denote the closed convex cone defined by Eqs. (3.40) and (3.41), asWecsep.

This is a wider class of process matrices, compared to the causally separable
ones. Hence, one would expect that a Witness for a causally non separable process
matrix, might not be able to witness the fact that a process matrix lies outside the
set of extensibly causally separable process matrices. However, when witnessing the
causal nonseparability of the quantum switch one would expect that restricting to
the set of process matrices of the form qW A≺B≺C + (1 − q)WB≺A≺C is enough as
the general definition of extensibly causally nonseparable process matrices should
reduce to this form when we restrict Charlie to be last.

Since we have the characterization of the more general tripartite extensibly
causally separable process matrices, we wrote an SDP for this case, where we can
witness the extensibly causal nonseparability of any tripartite process matrix. This
means that we replace W3C

csep by Wecsep. Out of curiosity, we searched for a witness
for the quantum switch with this SDP and, curiously, we obtain different results: a
different Witness with different general robustness

R′
r (Wswi tch) = r ′∗

swi tch ≈ −1.55541 (3.42)

with visibility v ≈ 0.3913. Recall the respective values of the previous SDP:
Rr (Wswi tch) = r∗

swi tch ≈ −1.57603, with v ≈ 0.3882. Intuition says that these val-
ues should be the same for both SDPs; whether we allow for the closed convex set,
(with which we check whether the quantum switch lies inside or outside) to have
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the possibility of Charlie being not last, should not affect the result because in the
quantum switch Charlie is always last. This means that in the geometrical picture,
we expect that along the line defined by 1◦ and Wswi tch , we expect that the two sets
have the same boundary, therefore the optimal switch should have been the same.
Our results suggest that the boundary is slightly different, although we do not know
why.

Experimental Section

3.9 Witnessing (Experimentally) the Quantum Switch

3.9.1 Back Story

This second part of the chapter is based on Ref. [17]. We wanted to experimentally
realize the quantum switch since the start of my Ph.D. To build such an experiment,
we have to use two degrees of freedom of the same system (photons in our case). We
spent a couple of months thinking about the various degrees of freedom that we could
use, given the resources of our lab, and eventually decided on using the polarization
degree of freedom of a photon as the control bit. The information carried within this
degree of freedom is tranfered into path degree of freedom with a polarized beam-
splitter and hence the photon takes different paths which lead to different orders of
the parties A and B depending on the state of the polarization of the photon. As a
target bit we decided on the Optical Angular Momentum (OAM) degree of freedom
of the photon. We also decided that Alice and Bob should perform unitaries. With
these constraints we sketched the setup and started to implement it in the lab. We
spent some time in the lab testing our available resources to be used in the experiment,
but by the time we had decided on the final sketch of the setup, we understood that
the implementation of the unitary gates for Alice and Bob (inside an interferometer
that is the quantum switch, as we shall see later) was a very difficult task that would
be best done by our future hired experimentalist of the group. Here we report our
experimental design, the measurements needed—the Witness that we obtained with
our SDP programs tailored to our experimental capabilities—and our final results.

3.9.2 Witness: Taking Experimental Restrictions
into Account

The first restriction that we need to implement in our SDP is the fact that the witness
is composed of unitaries for A and B. A general causal witness, as we have discussed,
is written in terms of the operations of the parties as follows
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S =
∑
i jk

αi jkM
AI AO
i ⊗ MBI BO

j ⊗ MCICO
k , (3.43)

with dCO = 1 in the case of the quantum switch. Therefore, in our SDP, we have to
restrict our search of causal witnesses not only to in the set of valid ones, S∗, but also
among those that decompose as in Eq. (3.43) where MAI AO

i and MBI BO
j are the CJ

matrices of unitary operators, which we denote as U AI AO
i and UBI BO

j respectively.
Hence, we are looking for witnesses of the form

S =
∑
i jk

αi jkU
AI AO
i ⊗UBI BO

j ⊗ MCICO
k , (3.44)

Now we need to find what exactly the above form means in terms of constraints on
the witness S, such that we impose it on the SDP. The answer is simple: unitarity
imposes constraints on the matrices U AI AO

i and UBI BO
j , which imposes constraints

on the operator S. These constraints are symmetry constraints on the elements of the
CJ matrix (4 × 4 matrix) of a unitary (2 × 2) matrix. For a CJ matrixU of a unitary,
these are the following

U (1, 1) = U (4, 4)

U (2, 2) = U (3, 3)

U (1, 2) = −U (3, 4)

U (1, 3) = −U (2, 4)

(3.45)

These constraints apply to the matrices U AI AO
i and UBI BO

j and propagate to the
operator S. We end up with a set of constraints for S which (together with those for
a valid causal witness) define the set of witnesses that can be decomposed such that
Alice and Bob perform unitaries, which we denote as SU ∈ S∗.

We add those constraints in our SDP expressed in (3.36) where nowS∗ is replaced
by SU . We find the random robustness and visibility to be

Rr,U = r∗
U = −0.505836, vU ≈ 0.6641 (3.46)

Observe that having restricted our search of witnesses, we find a witness with less
tolerance to noise, when compared to the optimal one with r∗

swi tch ≈ −1.57603 and
v∗
swi tch ≈ 0.3882.

3.9.3 Implementation of the Quantum Switch

In this section we report the progress of our own implementation of the quantum
switch (hence it is currently unpublished). The reason why we decided to make
our own experimental realization is because one can make certain arguments that
suggest a ‘loophole’ in the previous implementation in Refs. [11, 12]. The issue is
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Fig. 3.4 The quantum
switch, in theory: a sketch
of one possible
implementation of the
quantum switch, where the
control qubit is encoded in
the polarization degree of
freedom. We see that
depending on the state of the
incoming photon, the two
different orders of Alice and
Bob will be realized

the realization of the quantum switch itself. A general, theoretical scheme of such a
realization is shown in Fig. 3.4 where the order of A and B is conditioned on the state
of the incoming photon, for example the polarization being |H〉 or |V 〉. We sketch the
experimental realization of Refs. [11, 12] in Fig. 3.5. In that scheme, the issue is that
the gate that is implemented byAlice can be argued to be slightly different depending
on whether she operates first or second, although the coherence of the control bit
remains intact up to experimental error. The quantum instrument of Alice (or Bob)
that performs the unitary operation is a series of waveplates (a quarter-waveplate,
half-waveplate, quarter-waveplate configuration will perform an arbitrary unitary in
the polarization degree of freedom). If Alice is first, then the photon will go through
the series of waveplates, hitting them at some positions α1,2,3 (shown in Fig. 3.5).
Now if Alice is second, the photon will go through the same series of waveplates but
hitting them at some different position β1,2,3. Hence, if one splits all waveplates in
half such that positions α1,2,3 and β1,2,3 are on different halves of the waveplates, one
can see that party A is no longer one party, but two, say A1 and A2. In this case, if the
control bit is in state |0〉 (horizontal polarization) the order of the parties is A1 ≺ B1

(and parties A2, B2 do not perform any operations) whereas if the control bit is |1〉
(vertical polarization) the order of the parties is B2 ≺ A2. When the control bit is in
some superposition state of |0〉 and |1〉, then the two circuits are implemented ‘in
superposition’: A1 ≺ B1 and B2 ≺ A2. Clearly, this is not the implementation of the
tripartite protocol of the quantum switch, as there are five parties involved A1, A2,
B1, B2 and C .

We wanted to implement a quantum switch without this issue. In Fig. 3.6 we show
a sketch of the experimental setup. As already mentioned, the degrees of freedom
we chose are: polarization for the control bit and OAM for the target bit. In order
for Alice and Bob to implement their unitaries, each of them needs the following
elements in a sequence: two spherical lenses, two cylindrical lenses, twoDove prisms,
two cylindrical lenses, two spherical lenses. The experiment is performed with weak
coherent pulses, prepared in a diagonal polarization state |D〉 and in the 00 OAM
mode (TEM00). Charlie, sitting at the end of the experiment, makes a measurement
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Fig. 3.5 The quantum switch, as implemented in Ref. [11]: a sketch of the experimental setup
where the control qubit is encoded in the path degree of freedom of the incoming photon. Depending
on the output port of the initial beam splitter, the photonwill go throughAlice andBobwith different
orders

Fig. 3.6 The quantum switch, as implemented in our experiment: a sketch of the experimental
setup where the control qubit is encoded in the polarization degree of freedom of the incoming
photon. Depending on the output port of the initial polarized beam splitter, the photon will go
through Alice and Bob with different orders

on the control bit in the D/A basis, according to the Witness, which we discuss
below. In this implementation, it is no longer the case that the parties can be ‘split’
in two, as the incoming system to the parties A and B is coming from the same
spatial position. However, one can make a similar argument about each party that
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may perform a different unitary depending on the incoming polarization. It is known
that Dove prisms perform slightly different unitaries depending on the polarization.
Hence, from a position degree of freedom (which was the issue on the previous
implementations) we have moved to another issue, less obvious or experimentally
significant, regarding the Dove prisms’ performance depending on polarization.

Moreover, there is another issue with the previous implementation that is fixed
in our case: just as the path degree of freedom was problematic in the previous
implementations, one can make the same argument about the time of arrival of the
photons at each station. The fact that A is performing its operation in a ‘superposition’
of now and later (depending on the short or longer path of the photon) could make
someone ask ‘do the waveplates behave in the same way now and later?’ A way to
tackle such an argument is to use long photons—at least longer than the length of the
experimental setup. We used weak coherent pulses to detect single photons, with a
coherence length much larger that our setup. This results in Alice and Bob operating
on their incoming photon over a long period of time (because the photon is largely
delocalized) such that the difference between ‘now and later’ will be not be an issue
anymore.

Despite our efforts tofix someof the issueswith previous experimental realizations
of the quantum switch, we have not reached the end of the story. Even with the
previous experimental issues solved, there still remains one conceptual ‘loophole’.
Namely, the control bit that travels together with the target bit: so long there is a
degree of freedom which is accessible to the parties as they perform their operations
on the target bit, there is a loophole. Therefore, a solution would be for them (the
degrees of freedom) to be separate, namely for the control bit to be a different system
than the target bit. However, we do not know if such an experimental realization is
possible.

3.9.4 Tailoring Our Witness

As mentioned in the previous section, we obtained aWitness, suitable for this imple-
mentation of the quantum switch (with A and B performing unitaries). Its visibility,
with respect to white noise was vU ≈ 0.6641. Let us now see what are the exact
operations that the parties have to do. We begin with the possible operations, such
that we have a set of combinations of the parties operations from which we can find
the different combinations and weights in Eq. (3.43). Charlie can measure 4 possible
observables of the control bit: {1, X,Y, Z} with X,Y, Z being the Pauli matrices:
σx ,σy,σz . TheCJmatrices of the unitaries ofAlice andBob live in a 4 × 4 − 6 = 10-
dimensional space. Note that the constraints in Eq. (3.45) are 6, because the last two
yield two for the real part and two for the imaginary. This gives the dimension of SU :
initially S is a 32 × 32 matrix (dAI dAO dBI dBO dCI = 32), which says that it lives in a
1024-dimensional space, and given the constraints upon SU , which are 624 in total,
we have that SU lives in a 400-dimensional space.
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The fact that U AI AO
i and UBI BO

j are 10-dimensional means that there are 10
unitaries that span the Hilbert space of the operations of A and B. Hence, there
are 10 possible unitaries for these parties. Together with the fact that Charlie
has 4 different possible operations, we may end up with 400 different terms in
SU , which means that we may (depending on the amount of no-zero coefficients)
have to run our experiment 400 times to obtain all the terms in SU . For this rea-
son, we decided to restrict the amount of unitaries. We chose the following uni-
taries, given that any unitary can be written as a combination of Pauli matrices,
{I, X,Y, Z , (X − Z)/

√
2, (X + Z)/

√
2, (Y + Z)/

√
2}. Restricting SU to be com-

posed of unitaries for Alice and Bob only from this set, we obtain a Witness with
r∗ = −0.248225 and v = 0.8011. We have significantly decreased the tolerance of
our witness to white noise, but the number of possible measurements is now 144 and
after calculating the exact coefficients we find that they are always zero when Charlie
performs Y, Z and sometimes zero on all other cases. The exact number of terms in
the Witness is now 47. This means that 47 measurements need to be performed in
the lab, each measurement consisting of a unitary operation for Alice, another one
for Bob, and a measurement of the control bit for Charlie. The latter measurement
outcome will provide the statistics needed.

3.10 Conclusion

In this chapter, we brought the process matrix framework and all its oddities one step
closer to the reality of an experimentalist. The framework is predicting scenarios
incompatible with a definite causal order between some parties, and some of those
scenarios have the capability to produce noncausal correlations; i.e violating causal
inequalities.

In the theoretical part of this chapter, based on Ref. [1], we provided a way to
prove the causal nonseparability of any given process matrix. This is done through a
theoretical object, called causal witness. Keeping an eye on experimental realizations
of causally nonseparable process matrices, this causal witness (as with entanglement
witnesses) corresponds to measurements that need to be done in the lab. To obtain
a witness, one needs to characterize the set of causally separable process matrices.
We provide such a characterization for the general bipartite case and a special tripar-
tite case. We provide the SDP that looks for the optimal causal witness for a given
process matrix in these cases. This optimality is in terms of tolerance to white noise
(represented by a joint mixed state that all the parties receive) although it can be
altered to represent tolerance to any kind of noise model, depending on the experi-
mental realization. We applied our results to the quantum switch: a tripartite causally
nonseparable process matrix, which has an experimental realization. We obtained its
optimal causal witness.

In the experimental part of this chapter, based on Ref. [17], we tailor even further
our theoretical results, to meet the requirements of our own experimental realization
of the quantum switch. We obtain a causal witness that allows for the two parties to
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perform only unitaries, and even restrict those ones to only seven. The third party
performs a projective measurement. Finally, we briefly present the experimental
setup, where the target qubit is encoded in the OAM degree of freedom and the
control qubit in the polarization degree of freedom. We comment on the advantages
over similar past experiments and justify our excitement for our implementation of
the quantum switch.

Appendix: Process Matrix Characterization

Bipartite valid process matrices: Here we provide the derivation of the Eq. (3.5)
that completely characterize the set of bipartite causally separable process matrices.

The set of valid process matrices is defined by the following requirements: the
bipartite expression of the probabilities in Eq. (3.1) must be non-negative and sum
up toone for all possible operations (includingoperations that act on ancillary systems
on arbitrary input states, which we ignore at the moment although it leads to the same
conclusion). These yield

W ≥ 0 (3.47)

Tr[(MAI AO ⊗ MBI BO )W AI AO BI BO ] = 1 ∀MAI AO ≥ 0, MBI BO ≥ 0, (3.48)

s. t. AO M
AI AO = 1AI AO/dAO , BO M

BI BO = 1BI BO/dBO . (3.49)

We remind the definition of two maps, we will use extensively

xW = 1x

dx
Trx W (3.50)

[1−x]W = W − xW, (3.51)

Using the second map we defined above, we can see that for any two Hermitian oper-
ators X and Y , the operators [1−AO ]X + 1AI AO and [1−BO ]Y + 1BI BO satisfy the above
normalization constraints in Eq. (3.49). Then we write the normalization condition
of the probabilities of Eq. (3.48) as

Tr[([1−AO ]X + 1AI AO ⊗ ([1−BO ]Y + 1BI BOW ] = 1, ∀X,Y (3.52)

For X = Y = 0 this yields
Tr(W ) = dAO dBO . (3.53)

For Y = 0 and X = 0 in turn, implies

Tr[([1−AO ]X ⊗ 1BI BOW ] = 0, ∀X,

Tr[(1AI AO ⊗[1−BO ] Y )W ] = 0, ∀Y,
(3.54)
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because for Y = 0 we have

Tr[([1−AO ]X + 1AI AO ) ⊗ 1BI BO )W ] = 1 ⇒
Tr[([1−AO ]X ⊗ 1BI BO )W ] + Tr[(1AI AO ) ⊗ 1BI BO )W ] = 1 ⇒

Tr[([1−AO ]X ⊗ 1BI BO )W ] = 0

Back to the Eq. (3.54), they imply

Tr[([1−AO ]X ⊗[1−BO ] Y )W ] = 0 (3.55)

Finally, thinking of the trace as a Hilbert-Schmidt inner product and the fact that
the maps [1−AO ] and [1−BO ] are self-adjoint, the above conditions (3.54), (3.55) are
equivalent to

[1−AO ](TrBI BO W ) = 0

[1−BO ](TrAI AO W ) = 0

[1−AO ][1−BO ]W = 0.

(3.56)

which we rewrite as
BI BOW =AO BI BO W

AI AOW =AI AO BO W

W = BOW + AOW − AO BOW

(3.57)

Each of these conditions defines a linear subspace, whose intersection is a subspace
on which all valid bipartite process matrices live, and we denote as

LV = {W ∈ AI ⊗ AO ⊗ BI ⊗ BO |W = LV (W )}, (3.58)

The projector onto this subspace, LV will be used in many occasions in this chapter,
hence it is useful to find its expression. Firstly, we can write each of the equations
in (3.57) as a projector onto a subspace

W = L A(W ), W = LB(W ), W = L AB(W ) (3.59)

where the projectors are

L A = W − BI BOW + AO BI BOW,

LB = W − AI AOW + AI AO BOW,

L AB = BOW + AOW − AO BOW

(3.60)
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Then the projector we are looking for, LV , is the intersection of the subspaces of
the above three projectors, and is given simply by their composition, i.e. LV (W ) =
L A ◦ LB ◦ L AB , which can be written as

LV (W ) = AOW + BOW − AO BOW − BI BOW + AO BI BOW − AI AOW + AI AO BOW
(3.61)

This completes the characterization of the set of bipartite process matrices: an oper-
ator W ∈ AI ⊗ AO ⊗ BI ⊗ BO is valid if and only if W ≥ 0, TrW = dAO dBO and
W = LV (W ).

Tripartite valid process matrices: Here we provide the characterization of the set
of valid process matrices in the tripartite case and write the explicit expression of the
projector onto the subspace they live. An analogous to the bipartite case argument
leads to the following conclusion: an operator W ∈ AI ⊗ AO ⊗ BI ⊗ BO ⊗ CI ⊗
CO is a valid tripartite process matrix if and only ifW ≥ 0, TrW = dAO dBO dCO and

W = LX (W ), X = {A, B,C}
W = LXY (W ), {X,Y } = {A, B,C}

W = L ABC(W )

(3.62)

where the maps L A, LB, LC , L AB, L AC , LBC , L ABC are commuting projectors onto
linear subspaces of AI ⊗ AO ⊗ BI ⊗ BO ⊗ CI ⊗ CO defined by

L A(W ) = [1−(1−AO )BI BOCICO ]W ,

LB(W ) = [1−(1−BO )AI AOCICO ]W ,

LC(W ) = [1−(1−CO )AI AO BI BO ]W ,

L AB(W ) = [1−(1−AO )(1−BO )CICO ]W ,

L AC(W ) = [1−(1−AO )(1−CO )BI BO ]W ,

LBC(W ) = [1−(1−BO )(1−CO )AI AO ]W ,

L ABC(W ) = [1−(1−AO )(1−BO )(1−CO )]W

(3.63)

where we used the shorthand notation

[∑X αX X ]W =
∑
X

αX · XW (3.64)

for a sum over products of subsystems X with coefficients αX (and with 1W := W ).
The above constraints are equivalent to W = LV (W ), where the map LV is

obtained by composing the 7 maps in (3.62), and is expressed as

LV (W ) = [
1−(1−AO+AI AO )(1−BO+BI BO )(1−CO+CICO )+ AI AO BI BOCICO

]W (3.65)
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which defines a projector onto the linear subspace

LV = {
W ∈ AI ⊗AO⊗BI ⊗BO⊗CI ⊗CO |W = LV (W )

}
. (3.66)

This completes the characterization of the valid tripartite process matrices. For the
n-partite case, refer to the Appendix B of the relevant paper [1].
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Chapter 4
Causal Polytopes

4.1 Back Story

In Chap. 2, causal and causally separable processes, we saw two different descrip-
tions of the same situation. The situation is that there are a number of parties oper-
ating on their incoming system, obtaining an outcome, and send out an outgoing
system. As we have seen we describe this situation through the process matrix for-
malism, assuming that the systems and the operations on them are described by
quantum mechanics—this description is device-dependent. Another description,
device-independent, is at the level of probabilities of the outcomes of the parties,
given their settings. This is in complete analogy with quantum correlations: we
can describe the situation using a state (like a bipartite entangled state) or using the
obtained correlations, after performingmeasurements on the state. Then we can clas-
sify the states into separable and nonseparable states and the correlations into local or
nonlocal correlations—depending on whether they satisfy a set of constraints. Local
correlations form a convex polytope.

Similarly, in Chap. 2 we discussed that the probabilities that respect causality
(as defined in the Chapter) form a convex polytope. However, a rigorous proof was
lacking. Furthermore, characterization of a particular causal polytope, defined by a
number of parties and with given settings and outcomes, is an interesting task in
its own right. This is because the facets of the polytope are causal inequalities, that
is, restrictions on the correlations that satisfy causality. As we know, the process
matrix formalism allows for violations of such causal inequalities, hence this line of
investigation can lead to new ways (process matrices) to observe violations of causal
inequalities, even though an experimental observation of such extraordinary results
is still lacking.

After discussions with two collaborators, experts in convex polytope characteri-
zation, we decided on the project: to lay down the tools for characterization of causal
polytopes and investigate some particular cases. Using our previous knowledge of
the concepts around the process matrix formalism [1] and of those developed in
Chap. 2 and Ref. [2], we defined causal correlations, provided some of its properties,
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proved rigorously that they form a convex polytope, and finally studied a particular
tripartite causal polytope. In this Chapter, we describe the ideas developed for this
project and the main results, both reported in Ref. [3]. We also describe the specific
technique for a bipartite polytope characterization.

4.2 Introduction

The study of correlations between a number of measurement stations is of course
not new. Bell correlations are the most famous ones, that arise from two distant
measurement stations that receive an entangled state [4]. The counter-intuitive results
of such measurements required a systematic way of studying quantum correlations,
i.e. to classify them in terms of certain constraints that they should satisfy (a Bell-
type inequality). In our case, we are interested in classifying correlations between
a number of parties, that satisfy a notion of causality—which translates to similar
inequalities. As in the case of Bell-local correlations, for a fixed number of settings
and outcomes for the parties, the causal correlations form a causal polytope whose
non-trivial facets define causal inequalities.

Studying correlations is closely connected to studying causal structures: for exam-
ple, the no-signaling constraints (Bell-type inequalities) that local correlations should
obey, correspond to constraints in the causal structure of the experiments (their cor-
relations are due to a common cause). There is a growing interest in studying and
characterizing general causal structures [5–8] and understanding when the corre-
sponding correlations can be produced with classical or quantum systems [9, 10].
Here we are interested in correlations that can be achieved by a well-defined causal
structure, i.e. one that obeys causality, and the corresponding constraints on the cor-
relations are the causal inequalities

The interest in causal inequalities comes from the process matrix formalism [1],
which, very surprisingly, allows for scenarios that violate such causal inequalities.
To remind you of the core of that formalism: it is assumed that a number of parties
are localized inside closed laboratories that receive a (quantum) system, the party
performs a quantum operation on that system obtaining an outcome, and then (pos-
sibly conditionally on the outcome) sends another system out. The process matrix
formalism provides a characterization of the allowed correlations (joint probabilities
of the local outcomes given their settings) without any assumption on the global
causal structure in which the parties are embedded. Assuming a notion of causality
(like the one in Chap. 2) one can see how it manifests in terms of the description of
a given scenario: at the level of probabilities (causal correlations), or at the level of
the process matrix.

The interesting part is that process matrices have been found that can be used by
the parties as a resource to give rise to noncausal correlations [1]. Unfortunately there
has been no experimental realization of such scenarios—even such a possibility is not
certain. However, we can still develop the tools for the study of causal polytopes and
causal inequalities. In this chapter, based on Ref. [3], we define causal correlations:
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joint probabilities of the local outcomes of the parties,whichwewill call inputs, given
their settings, which we call outputs. Our definition follows the ones of Ref. [2], on
which Chap. 2 is based. We show some properties of these correlations. We prove
that for a fixed number of parties and their inputs and outputs, the correlations form
a convex polytope whose vertices correspond to deterministic strategies. This means
that any causal correlation can be expressed as a probabilisticmixture of deterministic
causal strategies. Deterministic causal strategies are those where the output of each
party is a deterministic function of its input and of the input of the parties that have
operated in its past. We describe the specifics of polytope characterization for a given
scenario: from obtaining the vertices, to providing them as an input to some software
to obtain the facets of the polytope. For that we use a simple bipartite case. We apply
this technique to analyze the simplest tripartite non-trivial case in terms of its causal
polytope and its nontrivial facets. We provide the main results of this analysis and
finally we discuss our results.

4.3 Multipartite Causal Correlations

4.3.1 Some Notations

In our study, we consider situations where a finite number of parties is involved,
N ≥ 1, each named Ak , k = 1, · · · , N . Each party Ak obtains an input xk from
some finite set and generate an output ak also from some finite set (different in
principle for each xk). (Note that although in different Chapters we call xk a setting
and ak an outcome, here we use the convention of calling them inputs and outputs
as this is common practice in similar analysis of correlations in terms of polytope
characterization.)We call a ‘scenario’: the fixed number of parties, the set of possible
inputs for each party, and the set of possible outputs for each input for each party.
We define the vectors of inputs and outputs �x = (x1, . . . , xN ) and �a = (a1, . . . , aN ).
The probabilities (or correlation) obtained by N parties in a fixed scenario is then
described by the conditional probability distribution P(�a|�x).

We denote the full set of parties as, N = {1, 2, · · · , N }, a subset of parties
K ⊂ N , as K = {k1, k2, · · · , kK }. The lists of inputs and outputs for these K par-
ties are �xK = (xk1 , xk2 , · · · , xkK ) and �aK = (ak1 , ak2 , · · · , akK ). This allows us to
write marginal correlations: for example, for the subset K, we have P(�aK|�x) =∑

�aN \K P(�a|�x). When K = {k}, where we single out one party, Ak , we simply write
k instead of K and we write the vectors for the remaining N − 1 parties in N \k as
�x\k = (x1, · · · , xk−1, xk+1, · · · , xN ) and �a\k = (a1, · · · , ak−1, ak+1, · · · , aN ).
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4.3.2 Definition and Properties

The definition of causal correlations in the multipartite case (referred to as causal
processes) is one of the main results in Chap. 2 and Ref. [2]. Here we adapt this
definition (in particular, the one referred to as ‘canonical causal decomposition’) to
describe causal correlations for a number of parties that are embedded in a well-
defined causal structure, be it probabilistic or dynamical. In this definition, we are
not concerned with the causal order of the parties, we simply write the correlations
in terms of probability of inputs given outputs. We also denote dependence of some
correlation P(�a|�x) on a variable b, as Pb(�a|�x).

Definition 5 (Multipartite causal correlations)

• For N = 1, any valid probability distribution P(a1|x1) is causal;
• For N ≥ 2, an N -partite correlation is causal if and only if it can be decomposed
in the form

P(�a|�x) =
∑

k∈N
qk Pk(ak |xk) Pk,xk ,ak (�a\k |�x\k) , (4.1)

with qk ≥ 0 for each k,
∑

k qk = 1, where (for each k) Pk(ak |xk) is a single-party
(and hence causal) probability distribution and (for each k, xk, ak) Pk,xk ,ak (�a\k |�x\k)
is a causal (N−1)-partite correlation.

We move on to some properties of such causal correlation. The proofs of these
properties are in the Appendix of the related paper [3].

Convexity: Any convex mixture of causal correlations, for a given scenario, is also
a causal correlation.

Ignoring (the outputs of) some parties: Any marginal correlation, for any subset
of parties, of a causal correlation is also causal. In particular, consider an N partite
causal correlation P(�a|�x) and a (nonempty) subsetK ⊂ N with K parties. Then the
K -partite correlation

P�xN \K(�aK|�xK) := P(�aK|�x) =
∑

�aN \K

P(�a|�x) (4.2)

is causal for all �xN \K.
Note that the correlation written above, P�xN \K(�aK|�xK), is conditioned only on the

inputs of the N − K parties and not the outputs, as denoted by the subscript �xN \K.
This is the case when the outputs of the parties are discarded. Hence, when a set of
parties have a causal correlation, when the outputs are discarded for some subset of
the parties, the marginal correlation for the remaining parties would also be causal.
If the outputs of the N − K parties are not discarded, then the above correlation
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would be P�xN \K,�aN \K(�aK|�xK) and there is no guarantee that their correlation would
be causal.

Note that if the outputs of the N − K parties are not discarded, then the correlation
for the K parties is conditioned on the inputs and outputs of the N − K parties. A
correlation conditional on some outputs of some parties implies post-selection,which
is known to be able to turn causal into noncausal correlations [2, 11].

Combining causal correlations ‘one after the other’: If for two sets of parties K,
N \K, it is that K ≺ N \K, in the sense that all the parties in K are acting before
the parties in N \K, and if each sets are described by a causal correlation, then the
correlation for the combined set, i.e.

P(�a|�x) := P(�aK|�xK) P�xK,�aK(�aN \K|�xN \K), (4.3)

is also causal.

An equivalent form of multipartite causal correlations: For the case of N ≥ 2,
we find an equivalent form for an N -partite causal correlation

P(�a|�x) =
∑

∅�K�N
qK PK(�aK|�xK) PK,�xK,�aK(�aN \K|�xN \K) (4.4)

(note the P is a different function for each subset K) where the sum runs over
all nonempty strict subsets of N = {1, 2, · · · , N }, with qK ≥ 0 for each subset
K,

∑
K qK = 1. Also, K, PK(�aK|�xK) is a |K|-partite correlation and (for each

K, �xK, �aK), PK(�aK|�xK) PK,�xK,�aK(�aN \K|�xN \K) is an N − |K|-partite correlation.
This characterization is reminiscent to the original definition in Chap. 2 and

Ref. [2], with the difference that there, the K-partite causal correlation was also
a nonsignaling correlation.

This equivalent characterization implies a correlation of this form is causal (but
as we will see later, not every causal correlation can be written in this form), where
the subset K contains all of N except one party, labelled k. Hence, the following
correlation is causal:

P(�a|�x) =
∑

k∈N
qk Pk(�a\k |�x\k) Pk,�x\k ,�a\k (ak |xk), (4.5)

(remember the subscript denotes dependence, not labelling of the correlation) with
qk ≥ 0, for each k,

∑
k qk = 1, where (for each k) Pk(�ak |�xk) is an (N − 1)-partite

causal correlation, and (for each k, �x\k, �a\k), Pk,�x\k ,�a\k (ak |xk) is a single-party prob-
ability distribution. The intuitive picture behind this form is that, while the original
definition decomposes a causal correlation into terms where one party is ‘first’, the
latter form distinguishes a party that is ‘last’. Note that the correlations arising from
the quantum switch described in Chaps. 2 and 3 are of precisely that form and hence
causal, as proven in Refs. [2, 11]. However, for the case three parties or more, N ≥ 3,
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the above form is not sufficient for a correlation to be causal. We provide below some
examples of such non-equivalence.

Some Examples

Example 1 Our first example of a causal correlation, is one that is compatible with
a fixed causal order between the parties; i.e. there is a variable defining the causal
order of the parties that is chosen in advance and independently of all parties inputs
and outputs. For example, a correlation compatible with the causal order A1 ≺ A2 ≺
· · · AN can be written as

P(�a|�x) = P(�a1|�x1) Px1,a1(�a2|�x2) Px1,a1,x2,a2(�a3|�x3) × · · · × P�x\N ,�a\N (�aN |�xN ), (4.6)

which of course satisfies the definition of a causal correlation in Eq. (4.1).

Example 2 The next step towards amore general example is to consider probabilistic
mixtures of the above situation. The resulting correlation is of course causal, as we
have discussed above on the convexity of causal correlations. Consider the following
situation: with probability q the correlation P is compatible with the causal order
As(1) ≺ As(2) ≺ · · · ≺ As(N ) and takes the value Ps , and with probability (1 − q) the
correlation is compatible with the causal order At (1) ≺ As(2) ≺ · · · ≺ At (N ) and takes
the value Pt (where s and t are two permutations of {1, 2, · · · , N }). Then, for any
q ∈ [0, 1], the correlation is written

P = qPs + (1 − q)Pt (4.7)

and it is also causal.

Example 3 Taking one step further towardsmore general situations, we require three
parties at least. This is the case of dynamical causal order Ref. [2] where the causal
order of some parties may depend on the inputs and outputs of some other parties in
their past. Consider the following conditions: three parties, each with binary inputs,
A1 has a single fixed output (which we can therefore ignore), and parties A2, A3 have
binary outputs, and the particular (deterministic) correlation,

P(a1, a2|x1, x2, x3) = δx1,0 δa2,0 δa3,x2 + δx1,1 δa2,x3 δa3,0, (4.8)

where δ is the Kronecker delta. This correlation is tailored such that it describes
the following situation: observing the factor δx1,i , i = 0, 1 in each of these terms
we understand that the correlation for the parties A2, A3 depends on the input of
A1—hence we can think that A1 acts first and depending on their choice for x1, the
correlation for the remaining parties changes. For x1 = 0 the first term is ‘activated’,
which tells us that A2 outputs 0 and a3 = x2, which means that A2 communicates
their input to A3, compatible with A2 ≺ A3. Now if the input of A1 is x1 = 0, the
second term gets activated, which is compatible with A3 ≺ A2. Therefore, we see
that A1 can ‘select’ between the two possible causal configuration for the parties
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A2, A3. As we discussed in Chap. 2, this situation is compatible with a well-defined,
albeit dynamical, causal order between the parties for each run of the experiment.
Note that this correlation, although causal, is not of the form of Eq. (4.5); indeed
there is no party that always acts last.

Example 4 The final example is a generalization of the example just above. The
order of A2, A3 depends on the input of A1 like before, but more generally. Their
order is a probabilistic function of the input of A1; that is, different values of x1
‘activate’ different probabilities for one order to be realized or the other. Let us see
a concrete example

p(a2, a3|x1, x2, x3) = δx1,0 (q0 δa2,0 δa3,x2 + (1 − q0) δa2,x3 δa3,0)

+ δx1,1 (q1 δa2,0 δa3,x2 + (1 − q1) δa2,x3 δa3,0)
(4.9)

with {q0, q1} ∈ (0, 1) (and not∈ [0, 1] because that would be the deterministic case).
We can see that if x1 = 0 the first term describes that A2 ≺ A3 with probability q0,
while A3 ≺ A2 with probability (1 − q0). For x = 1, the second term prevails and
now we have A2 ≺ A3 with probability q1 and A3 ≺ A2 with probability (1 − q1).
This correlation is of course causal and it is indeed of the form of Eq. (4.1).

4.4 Further Investigation of Causal Correlations

Aswediscussed already, any convex combinationof causal correlations is also causal.
This means that for a given scenario (fixed number of parties, each with finite sets of
possible inputs and outputs), causal correlations form a convex set. In fact it has been
argued (in Chap. 2, Refs. [2, 12], and was proven for the bipartite case in Ref. [12])
that it is a convex polytope, the so-called causal polytope. In this section we prove
that any causal correlation can be written as a convex combination of deterministic
causal correlations. The polytope structure follows from the fact that, for any given
scenario, these deterministic causal correlations are finite; so any causal correlation
can be described in terms of a finite set of deterministic causal correlations that
represent the vertices of the polytope. The facets of the causal polytope represent
linear inequalities that are satisfied by all causal correlations (the points inside the
polytope). The nontrivial inequalities (we will see what this means later) correspond
to (‘tight’ as they are called) causal inequalities.

4.4.1 Decomposing Causal Correlations into Deterministic
Ones

Here comes some more notations: We call a correlation deterministic if the list of
outputs �a is a deterministic function �α of the list of inputs, �x : �a = �α(�x). We denote
this deterministic probability distribution as
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Pdet
�α (�a|�x) = δ�a,�α(�x) (4.10)

To prove that causal correlations form a polytope, we prove the following theorem.

Theorem 6 Any N-partite causal correlation can be written as a convex combina-
tion of a finite number of deterministic causal correlations

P(�a|�x) =
∑

�α
q�α Pdet

�α (�a|�x) (4.11)

with q�α ≥ 0,
∑

�α q�α = 1, where the sum is over all functions �α : �x �→ �a that define
a deterministic causal correlation Pdet

�α (�a|�x).
The proof is by induction:

• For N = 1, we know that any correlation can be written as a convex combination
of deterministic ones (see, e.g., Ref. [13]), and that any single-party correlation is
causal.

• For any given N ≥ 2we shall prove the following: if it is true that all (N−1)-partite
causal correlations can be written as convex combinations of deterministic ones
(the induction hypothesis), then the same is true for N -partite causal correlations.

Here goes the proof: Consider an N -partite causal correlation P(�a|�x), decomposed
in the form of Eq. (4.1) (the definition of a causal correlation) which we rewrite here

P(�a|�x) =
∑

k∈N
qk Pk(ak |xk) Pk,xk ,ak (�a\k |�x\k). (4.12)

The correlation Pk,xk ,ak (�a\k |�x\k) is an (N − 1)-partite causal correlation (for all
k, xk, ak). The induction hypothesis tells us that the latter can be decomposed as
a probabilistic mixture of deterministic causal correlations

Pk,xk ,ak (�a\k |�x\k) =
∑

�a\k

qk,xk ,ak (k, xk, ak)P
det
�α\k (�a\k |�x\k) (4.13)

where the sum is over all functions �α\k : �x\k �→ �a\k that define a deterministic causal
correlation Pdet

�α\k (�a\k |�x\k). We have not proved the theorem yet, because we need to
express P(�a|�x) as a convex combination with weights that do not depend on the
inputs and outputs. We will see that we can remove this dependency (we just transfer
it to the deterministic correlation terms) by proving the following lemma.

Lemma 7 Consider a set of M points Qm (m = 1, . . . ,M) belonging to some linear
space, and Z different points P(z) (z = 1, . . . , Z) in their convex hull, written as
convex combinations of the extremal points Qm in the following way:

P(z) =
M∑

m=1

qm(z) Qm , (4.14)
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with weights qm(z) that depend on z (such that, for each z, all qm(z) ≥ 0 and∑M
m=1 qm(z) = 1).
Then, each point P(z) can also be written as

P(z) =
M∑

m1=1

· · ·
M∑

mZ=1

q̃m1,...,mZ Qmz , (4.15)

where it is now the extremal points Qmz that depend on z, while the new weights
q̃m1,...,mZ ≥ 0,

∑
m1,...,mZ

q̃m1,...,mZ = 1 are fixed. Note that one of the sums above is
over the label mz, which labels the extremal points.

Proof We start from Eq. (4.15) and prove that it is equivalent to Eq. (4.14). The new
weights are defined as

q̃m1,...,mZ :=
Z∏

z=1

qmz (z) . (4.16)

where it is clear that they do not depend on z, as the product runs through all the
indices z. Note that the weights qmz (z) are the same to the weights qm(z) of the
decomposition (4.14).

Then for a given z we have that,

∑

m1, . . . ,mz−1,
mz+1, . . . ,mZ

q̃m1,...,mZ = qmz (z) , (4.17)

(because
∑M

mi=1 qmi = 1), and

∑

m1,...,mZ

q̃m1,...,mZ Qmz =
∑

mz

∑

m1, . . . ,mz−1,
mz+1, . . . ,mZ

q̃m1,...,mZ Qmz

=
∑

mz

qmz (z) Qmz = P(z) , (4.18)

which completes the proof. �

Coming back to the proof of Theorem 6, we rename the party-input-output variables
(k, xk, ak) ≡ zk = 1, · · · , Zk . Now we apply Lemma 7 to Eq. (4.13) (the (N − 1)-
partite causal correlation which was decomposed into deterministic correlations)

Pk,xk ,ak (�a\k |�x\k) =
∑

�α1
\k ,...,�αZk

\k

q̃�α1
\k ,...,�αZk

\k
Pdet

�αzk
\k
(�a\k |�x\k) (4.19)
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where the correlations Pdet
�αzk

\k
(�a\k |�x\k) are taken from the same set as the Pdet

�α\k (�a\k |�x\k)’s
above, and hence are deterministic and causal.

We are still on the (N − 1)-partite correlation. Now we need to prove that the N -
partite correlation is a mixture of deterministic ones. One more step before we prove
it: we mention the single-party case (which of course can have the desired decom-
position) and then we ‘combine’ the single-party and the (N − 1)-party correlation
like we did earlier in our ‘combining correlations one after the other’ note.

The single-party probability distributions Pk(αk |xk) in Eq. (4.1) can also be
decomposed as a mixture of deterministic correlations

Pk(αk |xk) =
∑

αk

Pdet
αk

(αk |xk). (4.20)

Now using Eqs. (4.19) and (4.20), we can write the correlation P(�a|�x) of the form
of Eq. (4.1) as

P(�a|�x) =
∑

k∈N
qk

∑

αk

q ′
αk

Pdet
αk

(ak |xk) ×
∑

�α1\k ,...,�αZk
\k

q̃�α1\k ,...,�αZk
\k

Pdet
�αzk

\k
(�a\k |�x\k)

=
∑

k,αk ,

�α1\k , . . . , �αZk\k

qk q
′
αk

q̃�α1\k ,...,�αZk
\k

Pdet
αk

(ak |xk) Pdet
�αzk

\k
(�a\k |�x\k) .

(4.21)
which is indeed a convex combination of deterministic causal correlations, with
weights independent of the inputs and outputs of any party. This completes the
proof. �

4.4.2 Understanding Deterministic Causal Strategies

As we discussed already, a deterministic strategy (or correlation), Pdet
�α (�a|�x), is char-

acterized by a deterministic function �α of the list of inputs �x , which determines the
list of outputs �a = �α(�x). Recall that we require Pdet

�α (�a|�x) to be causal as well—not
all functions �α satisfy this. For the correlation to be causal it must be decomposed in
the form of Eq. (4.1). However, Pdet

�α (�a|�x) can only take the value 0 or 1which implies
that the weights in that decomposition must also be 0 or 1, and so the decomposition
has only one term. That is, each deterministic causal strategy is compatible with one
party acting first.

In particular, a deterministic causal strategy describes the following situation: it
determines a party Ak1 that acts first. This party obtains an outputak1 as a deterministic
function of its input xk1 (because �a = �α(�x), which specifies the outputs of all parties).
For each action of this party Ak (input xk1 , ak1 ), the remaining partiesmust also share a
deterministic causal correlation.We repeat the requirements: one party is determined
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to act first, which we denote now as Ak2(xk1 )
because the fact that it acts is determined

by the input of the previous party xk1 (we omit the dependence on the output ak1 as
it is fully determined by the input xk1 ). Now the output of that second party Ak2(xk1 )

is a deterministic function of its input and the input of the first party. We repeat the
pattern for the third party that depends on the input of the first and second party,
Ak3(xk1 ,xk2 )

, and its output is a deterministic function of its own input and the inputs
of the previous guys. And so on and so forth.

The conclusion of the above description is that for each given set of inputs �x ,
it can be viewed as they are being processed in a particular, generally non-unique,
causal order (because some parties may be causally independent which makes them
compatible with any causal order) Ak1 ≺ Ak �x

2
≺ · · · ≺ Ak �x

N
, [with Ak �x

2
= Ak2(x1),

etc.]. Hence, the deterministic causal correlation can be written as

Pdet
�α (�a|�x) = P(�ak1 |�xk1) P(ak �x

2
|xk1 , xk �x

2
) × · · · × P(ak �x

N−1
|�x\k �x

N
) P(ak �x

N
|�x) (4.22)

4.4.3 What Happens with Trivial Inputs or Trivial Outputs

Some interesting insights arise when we consider causal correlations for a number
of parties, where a subset of them have trivial inputs or trivial outputs. Let us start
with trivial outputs: consider the case where one party Ak has a fixed output for
all possible inputs—or we can ignore that output and equivalently say that Ak has
no output. If we look into Bell-type local correlations for this case, this scenario is
equivalent to one where the party Ak is simply ignored. In general, if a single input
xk has a fixed output, or equivalently no output, then the local polytope is equivalent
to the one obtained by discarding the input xk completely [14]. Now what can we
say about the causal polytope, when Ak has a fixed output for all its inputs?

We write the N -partite correlation as

P(�a|�x) = P(�a\k |�x\k, xk) = Pxk (�a\k |�x\k) (4.23)

If Pxk (�a\k |�x\k) is causal for all xk , then P(�a|�x) is of the form of Eq. (4.1), and hence
causal. Conversely, if P(�a|�x) is causal, then according to the property of a causal
correlation we discussed in the previous section on ignoring the outputs of some
parties, Pxk (�a\k |�x\k) is also causal for each xk .

Therefore, we can say that an N -partite correlation is causal if and only if all
of the conditional (N − 1)-partite correlations obtained for each possible input xk
of Ak are causal. This is useful in terms of testing whether a correlation P(�a|�x) is
causal, given that Ak has no output: it suffices to test whether the (N − 1)-partite
correlations are causal for each xk , and one can always assume that Ak acts first.
Note that this is not the case when working at the level of process matrices: a party
with a trivial output cannot be thought to act first, and it is definitely not the case that
if the remaining parties share a causally separable process matrix, then the whole
process matrix is causally separable. And we have already seen such an example: the
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quantum switch. In that tripartite scheme, the parties A and B perform unitaries (and
thus have trivial outputs) and the process matrix remaining if we trace out A or B is
causally separable. However, we know that the quantum switch is a tripartite causally
nonseparable process matrix, and the probabilities arising are causal (they fall into
the causal polytope). This is another paradigm of the different levels of investigation:
probabilities vs process matrix, which we have discussed extensively in Chap. 2.

Let us move to the other case, where a party Ak has now a single fixed input (or
no input). In this case, from the definition of conditional probabilities, we obtain

P(�a|�x) = P(�a\k, ak |�x\k) = P(�a\k |�x\k) P�a\k ,�x\k (ak). (4.24)

If P(�a\k |�x\k) is causal, then P(�a|�x) is clearly causal (remember our comment on
‘combining causal correlations one after the other’). Conversely, if P(�a|�x) is causal,
according to our comment on ‘ignoring the outputs of some parties’, then P(�a\k |�x\k)
is also causal.

Hence, the causality of an N -partite correlation is equivalent to the causality of
the (N − 1)-partite correlation obtained by discarding party Ak with a fixed input.
This is also in the case of locality of correlations (as defined by the local polytope).
We can think of Ak as acting after all the (N − 1) parties. This is also true in more
general situations, whenever a party Ak cannot signal to any other party or set of
parties—we can always think that they act last.

4.5 Polytope Characterization

We are ready now to characterize any multipartite causal polytope for any given
scenario. The bipartite casewas studied in Ref. [12], hence herewe study the simplest
tripartite case. However, before we do that, we use a simple bipartite example to
explain how exactly we characterize a causal polytope.

4.5.1 The Simple Bipartite Case

We consider the simplest bipartite case: both parties have binary inputs and outputs
A : (a, x = 0, 1) and B : (b, y = 0, 1) with the restriction (just to keep it simple)
that x = 0 ⇒ a = 0 and y = 0 ⇒ b = 0. This tells us that for x = 1, in general,
a = f (x, y) (obviously a will depend only on x if A is first) and that for y = 1,
in general, b = g(x, y). Each possible combination of the variables (x, y, a, b) will
be an axis on the space in which the causal polytope lives. There are two cases:
A ≺ B and B ≺ A. For each case, and for different combinations of (x, y, a, b), the
probability P(a, b|x, y) might take or not the value 1. This would correspond for a
value 0 or 1 to the corresponding axis. These values make up the coordinates of one



4.5 Polytope Characterization 103

Table 4.1 The first two columns are the possible combinations of x, y and the values for a, b given
the inputs and the fact that B ≺ A

x y a b

0 0 0 0

0 1 0 ξ

1 0 η 0

1 1 η1 ξ

extremal point of the polytope. We first obtain the polytopes corresponding to each
causal order A ≺ B and B ≺ A; the causal polytope will be their convex hull.

B ≺ A: We state the conditions more explicitly, and define some useful variables

a = f (x, y) = η00 + η01x + η10y + η11xy

η = η00 + η01 (= a, for y = 0 and x = 1)

η1 = η00 + η01 + η10 + η11 (= a, for y = 1 and x = 1)

b = g(x, y) = g(y) = ξ0 + ξ1y

ξ = ξ0 + ξ1 (= b, for y = 1).

(4.25)

Then, in order to study the correlations P(a, b|x, y), we first find out all the pos-
sible values of the variable a, b, x, y, ξ, η, η1. Table4.1 is matrix of the possible
combinations of a, b, x, y.

From Table4.1 we can see all the possible arrangements of the inputs and outputs,
given that η, η1, ξ are binary variables. Recall that each combination of (x, y, a, b)
written in Table4.1 and expanded in Table4.2 for all possible values of η, η1ξ, is
an axis in the space where the polytope lives. Then the probability P(a, b|x, y) for
each combination of the variables (a, b, x, y), specified above, (for different η, η1, ξ)
will be one point in the polytope space. For example, for a, b, x, y = 0, the value of
P(a, b|x, y) = 1 is the coordinate on that axis, for every value of η, η1, ξ. Another
example, for x, y, a = 1 and b = 0 the value of P(a, b|x, y) is 1 for η = 1 and 0 for
η = 0. For every combination of the values of η, η1, ξ, we obtain a different point:
hence we will have 8 different points defining our polytope, on the space defined
by the axis (a, b, x, y): there are 9 different axes given the above Table and that the
variables η, η1, ξ are binary.

Table4.2, starting from the sixth row, and bellow the first line, shows the coordi-
nates of each point of P(a, b|x, y) for each axis corresponding to each of the listed
combinations of (x, y, a, b). Hence, for every combination of (η, η1, ξ) there is one
vector specified by the its column below. Each vector corresponds to a vertex of the
polytope. The convex hull of these vertices is the polytope compatible with B ≺ A.

In a similar fashionweobtain the vertices for the polytope compatiblewith A ≺ B.
There are many different softwares that can analyze polytopes given a description of
their vertices. Then one can test various properties: if one inequality is a facet of the
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Table 4.2 The first four columns are the possible combinations of x, y, a, b for all possible values
of η, η1, ξ. On the top row of the remaining table, is the different combinations of the values η, η1, ξ
and under them is the value P(a, b|x, y). Each value P(a, b|x, y) is a coordinate of the axis specified
by the values of x, y, a, b on its left. Then a single point is defined by the column under each η, η1, ξ
combination, in the space defined by the axes (x, y, a, b)

x y a b 000 001 010 011 100 101 110 111

0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1

1 0 0 0 1 1 1 1 0 0 0 0

1 0 1 0 0 0 0 0 1 1 1 1

1 1 0 0 1 0 0 0 1 0 0 0

1 1 0 1 0 1 0 0 0 1 0 0

1 1 1 0 0 0 1 0 0 1 0 0

1 1 1 1 0 0 0 1 0 0 0 1

polytope, what are the facets of the polytope, if it is isomorphic to another polytope,
etc. After inserting the vertices of the two polytopes, one can obtain the convex hull
of the two, namely the causal polytope.

4.5.2 The Simplest Tripartite Case

Now we are ready to characterize the simplest tripartite causal polytope. We will see
that the above technique is the first step, but that we easily come across some diffi-
culties: there are too many combinations of (a, b, c, x, y, z) and too many auxiliary
variables. Hence, a different parametrization is taken. Also, to enumerate the vertices
we no longer do it by hand but with the use of some computational software.

Description of the situation: The simplest tripartite case is the following: each party
Ak has a binary input xk , a single fixed output for one of the inputs, and a binary
output for the other, that is, xk = 0 ⇒ ak = 0 and of course xk = 1 ⇒ ak = 0 or 1.
We now rename the parties for conveniency and we call them A, B,C with inputs
x, y, z and outputs a, b, c. We will denote the complete tripartite probability distri-
bution by PABC , i.e. PABC(a, b, c|x, y, z) := P(a, b, c|x, y, z) and by PAB , PA, etc.,
the marginal probability distributions for the parties in the subscript. For example,
PAB = (a, b|x, y, z) := ∑

c PABC(a, b, c|x, y, z). Notice that any marginal distri-
bution retains the dependency on all three inputs.

Obtaining the causal polytope: The vertices of the causal polytope for this scenario
can be found in the same way as in the bipartite case described above. Namely
we enumerate all the deterministic probability distributions PABC(a, b, c|x, y, z)
compatible with all of the 12 possible causal orders. To see these consider the case
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where one party acts first: there are two fixed causal orders for the remaining parties,
and two dynamical causal orders (where each one depends on the first party, as
discussed in the previous section). Hence for each party that acts first, we have four
possible causal orders. There are three parties, each of them that can be acting first,
hence we have 12 possible causal orders. We find that there are 680 deterministic
strategies, corresponding to the vertices of the polytope. 480 of those correspond to
a fixed causal order and the remaining 192 require dynamical order to be realized.

The causal polytope is 19-dimensional: this is the minimum number of param-
eters needed to completely specify any probability PABC(a, b, c|x, y, z). This is
because, for each set of inputs (x, y, z), if n of them are nonzero, then one needs
2n − 1 values to completely specify the probabilities for these inputs (the −1 comes
from normalization of the probabilities). Hence, the dimension of the problem is∑3

n=1

(3
n

)
(2n − 1) = 19.

To determine the facets of the polytope, which correspond directly to tight causal
inequalities, we need to fix a parametrization of the polytope, which means that a
set of axes must be defined. Different definitions of these axes lead to different basis
representations of the same polytope. Also different a parametrization are more
manageable than others by the different softwares used. In fact, the possibility of the
convex hull problem to be solved depended critically on the chosen characterization.

On the chosen parametrization (defined in the related paper [3]) the polytope was
found to have 13074 facets, each corresponding to a causal inequality. However, there
are equivalence classes either by permuting the parties, or by relabeling their outputs,
where an inequality can be obtained from others. There are 305 such equivalence
classes, whose complete list is in the Supplemental Material of the related paper [3].

Violating the simplest tripartite inequalities: There is a technique, a ‘seesaw’
approach, that finds violations of causal inequalities (already used in [12]). First,
we describe the problem: we need to find a process matrix W and the quantum

operations of the parties, described by their CJ matrices {MAI
k A

O
k

ak |xk } that would produce
probabilities P(�a|�x) that satisfy a given causal inequality of the form I (P(�a|�x)) ≥ 0
(where AI

k , A
O
k is the input and output system of the party Ak). Their produced

probabilities (for our three parties) would be

P(�a|�x) = P(a, b, c|x, y, z) = Tr
[(

MAI AO

a|x ⊗ MBI BO

b|y ⊗ MCICO

c|z
)

· W
]
, (4.26)

(For details in the process matrix formalism, refer to Chap. 2.) The approach we used
to find the process matrix and the instruments for the parties is a series of steps that
can eventually be realized iteratively by an algorithm.

The protocol: We start with random instruments for the (N − 1) parties. Then we fix
avalid processmatrix (chosen randomly), and formulate anSDP that finds the optimal
instrument of the N th party such that it minimizes the produced value I (P(�a|�x))
(remember that we need to violate the inequality I (P(�a|�x)) ≥ 0). In the next run of
the program, we fix the optimal instrument and vary the process matrix W (we ask
the SDP to find the optimal W that minimizes I (P(�a|�x)). In the next run, we fix the
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found W and vary the instrument of the N -th party again. After many iterations, we
do the same thing with the rest of the parties. Hence, the algorithm initially selects
random instruments and a process matrix, and optimizes each of these elements in
turn to find a minimum value of I (P(�a|�x)). This iterative procedure continues until
the algorithm converges to a value of I (P(�a|�x)). Although this only guarantees to
find a local minimum, by repeating the procedure many times with different initial
instruments one can obtain a bound (if any) on the optimal violation of the causal
inequality in question. The process matrix and instruments found for a given causal
inequality are presented in Ref. [3].

4.6 Conclusion

In this chapter, based on Ref. [3], we provided the tools to investigate correlations
between inputs and output for a number of parties (in other Chapters referred to as
settings and outcomes) in terms of whether they respect causality. The reasonwhywe
are interested in this task is because there are powerfulmathematical and optimization
techniques to provide us with the following: given any number of parties, (a) we can
obtain the causal polytope by listing its vertices; (b) using a software we can obtain
its facets that correspond to causal inequalities; (c) for a given inequality, using
optimization techniques we can obtain a process matrix and the operations of the
parties that produce correlations for the parties that violate the inequality.

In particular, followingChap. 2 (Ref. [2]), we have the form of causal correlations.
These are generated by local operations embedded in a definite causal order—but
remember, dynamical. This means that a party can influence the probabilities that
different causal relations of future parties are realized. We prove that causal corre-
lations form a polytope whose vertices correspond to deterministic strategies. This
means that every possible strategy that obeys causality can be reduced to (proba-
bilistic mixtures of) deterministic ones—where both outputs of the parties and their
causal relations are deterministic function of inputs of parties in their past. This sig-
nificantly simplifies the problem. Using this result, the set of causal correlations can
be conveniently described as a convex polytope whose vertices correspond to deter-
ministic strategies. Using polytope characterization techniques, which we describe
for the simple bipartite case, we characterized the simplest tripartite causal polytope.
We obtained its families of inequalities and with a ‘seesaw’ approach we showed that
one can obtain a process matrix and the parties’ operations to produce correlations
the violate a given causal inequality. Although the possibility of realizing experi-
mentally such a scenario is still the mothership, here we have laid down a number
of tools one can use to obtain correlations and the explicit circumstances for which
causality is violated.
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Chapter 5
Experimental Test of a Classical Causal
Model for Quantum Correlations

5.1 Back Story

It all started with the results published in Ref. [1]. They studied the traditional Bell
scenario: two distant observers perform experiments on their part of a jointly pre-
pared system. The observation of Bell was that the causal structure in which the
experiments are embedded, should impose constraints on the correlations that can
arise between the outcomes and the settings of the experiments [2], so that those
correlations are compatible with a classical causal model for the settings and out-
comes. In particular, there were two constraints: 1. Measurement independence: the
choice of settings is independent of the state of the joint system, and 2. Locality: the
outcomes of one experimenter cannot be influenced by the settings or outcomes of
the other experimenter. These constraints, expressed mathematically in a particular
scenario specified by the operations of the parties, yield the Bell-type inequalities.
For example, when the parties choose between two settings with two outcomes each,
we are led to the Clauser-Horne-Shimony-Holt (CHSH) inequalities. However, we
all know that these inequalities are predicted to be violated when the joint system
is a bipartite entangled state and the experimenters perform quantum measurements
on their part of the state.

In Ref. [1], they posed the following question: since the two conceptual con-
straints disagree with quantum mechanics, how much do we need to relax one or
the other constraint to reach an agreement? For example, to what degree can we
relax locality—or else to what degree can we allow the outcomes of one observer
to depend on what the other experimenter does—so that the conceptual constraints
(or the resulting causal model) agrees with the observed correlations? The answer
reported in Ref. [1] was two-fold: first they calculated the minimum causal influ-
ence between the outcomes of the parties required so that the correlations violating a
CHSH inequality are described by a classical causal model with such a causal link;
second, they showed that in a scenario different to the CHSH one, the latter causal
model cannot explain the correlations no matter the strength of the causal influence
between the parties. Hence, with the central object of investigation being a direct
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causal influence between the outcomes of the parties, it was found that a minimum
strength is required to explain the CHSH correlations, and an arbitrary strength is
insufficient to explain correlations in a more general scenario (with more settings
available to the parties). These results caught our attention and led to this project: an
experimental test of both theoretical claims. Our results were published in Ref. [3].

5.2 Introduction

The correlations that arise from measurements on entangled systems have always
puzzled physicists. In particular, they appeared to contradict twomain concepts about
the physical world. The first one is the idea that all physical systems should have
objective properties, and in particular that the outcomes ofmeasurements should have
well-defined values prior to and independent of their measurement. The second one
is the idea that causal influences have to be mediated through some physical system
that cannot travel faster than the speed of light. These concepts imply restrictions
on the observed correlations, known as local causality. Together with the fact that
the settings of the experiments in a Bell scenario should be chosen freely (referred
to as measurement independence), local causality leads to the famous Bell-type
inequalities, which are violated by observed correlations. Figure5.1 shows a typical
Bell scenario with variables assigned to main events: state preparation �, choice of
settings X,Y and outcomes A, B.

A natural way to investigate this incompatibility of our (or Bell’s) intuition about
the physical world and the observed correlations, is to explore what is wrong with
our intuition. In particular, we can explore the extent to which we can relax our intu-
ition (the above two assumptions: local causality and measurement independence) to
reach an agreement between the results and our understanding of the results [1, 4–11].
Understanding the results would mean that we have an explicit (causal) mechanism
of how the variables involved—the variables �, X,Y, A, B depicted in Fig. 5.1—
produce the observed correlations. Causal modeling seems to be the ideal tool for this
investigation [1, 9], as it is a well-defined framework which can be used for causal
inference: to translate correlations into cause-effect relations between variables
[12, 13].

Causal inference is achieved through two kinds of data: observational and
interventional. Discovering causal relations from observational data alone is dif-
ficult in general [14–17]. Observational data refers to correlations between variables
that occur ‘naturally’, without any external mechanism that changes the values of
these variables (or if so, they are included in the studied scenario); in other words,
it means sheer observation. This can be problematic as there may be possibility for
causal influences between certain variables but just happens to not occur naturally
and hence cannot be detected by observations alone. This problem has been solved by
the concept of intervention: if a variable is a cause for another one, then intervening
on the first one would change the statistics of the second one. The data collected with
this technique is called interventional. Causal models and the concept of intervention
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outcome 1

A

outcome 0

B

I choose 0 I choose 1

X Y

state preparation

Fig. 5.1 A Bell scenario: where two experimenters receive a part of a jointly prepared state,
described by the variable �, their choice of setting X and Y and their outcomes A and B. On the
bottom right we have the causal model in accordance to the causal assumptions imposed by Bell
(locality and measurement independence). As observed correlations are in contradiction with the
causal assumptions, this causal model cannot explain the violations of any Bell-type inequality

are the central tools of the theory of causal modeling and using them to formulate our
problem provides a clear and quantitative approach to relaxations of the assumptions
we are looking at [1, 9]. For example, in a CHSH scenario (which is a Bell scenario
where A, B, X,Y = 0, 1) we can map the restrictions of Bell’s assumptions for the
variables into restrictions on the causal model for these variables. Our problem then
is the incompatibility of the observed correlations (violating a CHSH inequality)
with the resulting causal model derived from Bell’s assumptions. This way, when we
want to relax any of Bell’s assumptions, all we have to do is relax the corresponding
constraint on the causal model—it would correspond to the absence or not of a causal
link—and compare again the correlations with the new causal model.

Methods: Here, we test a class of causal models that relax part of the assumption of
local causality. In particular local causality states that there should be no influence
from the setting of one party (which we call causal parameter independence) and
from the outcome of one party (called outcome independence) to the outcome of
the other party. We are interested in the latter. This is because, by relaxing outcome
independence alone, the observed correlations can be explained.We test thesemodels
in two experimental ways. Firstly, within the CHSH scenario it was found that the
causal link under investigation (between the outcomes, say from A to B) should be
above a particular value, reported in Ref. [1], and so we investigated the strength
of such a possible causal link through interventions: we intervene on one of the
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variable and observe whether the statistics of the other one change. Secondly, it was
found that these models are ruled out by observed correlations in a scenario different
to the CHSH, reported in Ref. [1]. Thus, by obtaining correlations that violate this
inequality, the class of causal models with a causal link between the outcomes of the
experimenters has to be ruled out.

Results: In the first experiment, within the CHSH scenario, by performing controlled
interventions on one of the outcomes, we find that the observed change in the statis-
tics of the other outcomes is insufficient: we observed (2 ± 2)% change, consistent
with no change, in agreement with quantum predictions, and much less than required
to explain the observed CHSH violation. In the second experiment, we consider a
different scenario to violate a new Bell-type inequality: each party chooses between
three measurement settings with two outcomes each. The observed correlations can-
not be explained even for arbitrarily strong causal influence between the outcomes of
the parties [18]. Although the first method requires detailed knowledge of the phys-
ical system under consideration in order to make the desired claim (that we rule out
a causal model with a causal influence between the outcomes), the second method
is a device-independent way to make the same claim.

5.3 Theory of Causal Modeling

A causal structure for n variables (V1, · · · , Vn) is represented by a directed acyclic
graph (DAG), an example shown in Fig. 5.2, with nodes representing the variables
connected by directed edges representing causal relations [12]. We depict a Bell-
scenario, where two parties, Alice and Bob, perform local measurements on their
part of a bipartite entangled state. We depict their outcomes with A and B, their
settings with X and Y and the description of the input state with a hidden variable
� (and with small letters their respective values). Now Bell’s assumptions of local
causality and measurement independence can be formulated in this framework as
restrictions on the possible causal models for this scenario. Local causality implies
that the outcome of each party should depend only on state of the system and the
choice of setting of the respective party, i.e.

p(a|x, y, b,λ) = p(a|x,λ) (5.1)

p(b|x, y, a,λ) = p(b|y,λ). (5.2)

These constraints can be obtained by restricting the possible causal influences to the
outcome of a party, from either the setting or the outcome of the other party. Hence,
as we have already said, local causality is the merging of two assumptions: causal
parameter independence (no causal link from the measurement setting of a party
to the outcome of the other party) and outcome independence (no causal link from
one outcome to the other). Measurement independence states that the measurement
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choices of Alice and Bob, X and Y respectively, are independent of the state of the
system. This implies that there is no causal link from�, to the variable X or Y ; hence

p(x, y,λ) =
∑

λ

p(x, y)p(λ). (5.3)

The causal models compatible with the above assumptions are the well-known Bell-
local hidden variable models: p(a, b|x, y) = ∑

λ p(a|x,λ)p(b|y,λ)p(λ) and are
shown in Fig. 5.2. The constraints on the probabilities arising from such a model
are known as Bell-type inequalities. In the simplest Bell scenario, where each of the
two parties chooses between two settings (x, y = 0, 1) with two possible outcomes
each (a, b = 0, 1), any correlations compatible with Bell-local causal models must
respect the CHSH inequality

S2 = 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉 ≤ 2, (5.4)

where
〈
Ax By

〉 = ∑
a,b=0,1(−1)a+b p(a, b|x, y) is the joint expectation value of Ax

and By .

Aim: We saw that the two assumptions of Bell (local causality and measurement
independence) translate to four restrictions on the existence of causal links: 1. no
causal link from the setting of a party to the outcome of another party, 2. no causal
link between the outcomes of the parties, 3. no causal link between � and the set-
ting of each party, and 4. no causal link between the settings of the parties. As we
have mentioned, our method of investigation is to see what happens when we relax
one of these assumptions, studied theoretically in Ref. [1]. We focus on the second
assumption: no causal link from one outcome to the other. We relax this assump-

Fig. 5.2 Bell scenario: A Directed Acyclic Graph (DAG), for variables representing the state
preparation �, settings X, Y and outcomes A, B in a Bell scenario. The causal links between the
variables satisfy local causality and measurement independence. The correlations compatible with
this model satisfy the CHSH inequality and hence, observed correlations that violate the inequality
cannot be described by the depicted causal model—it is a wrong causal model for them



114 5 Experimental Test of a Classical Causal Model for Quantum Correlations

Fig. 5.3 CHSH scenario: A causal model for a Bell scenario, with the additional link from A to
B. The insertion of this causal link makes the causal model capable of generating correlations that
violate the CHSH inequality. Therefore, this causal model is a possible candidate for the explanation
of the observed correlations in a CHSH scenario

tion such that there may be a direct causal influence from say A’s outcome to B’s
outcome, as depicted in Fig. 5.3. The same argument holds for the case of a causal
link from B to A or any probabilistic mixture of these cases; this is discussed in
the supplementary materials of the related paper [3]. This causal influence could be
sub- or super-luminal, instantaneous or even to the past, since the causal model is
formulated without any reference to the space-time structure, as long as it does not
create any causal loop. However, in our experimental realization, we test the causal
link between A and B, where A’s events occur in the causal past of B (there is a delay
line for the system that reaches B’s measurement station. The probability distribution
compatible with this causal structure can be decomposed as

p(a, b|x, y) =
∑

λ

p(a|x,λ)p(b|y, a,λ)p(λ). (5.5)

5.4 Experiment 1: Interventional Method

The first experiment we perform to test the desired class of causal models (depicted
in Fig. 5.3), is an interventional method. This is a core tool in the field of causal
discovery that allows us to identify and quantify causal relations [1, 12, 19, 20].
Formally, an intervention is the act of locally forcing a variable Xi to take some
specific value x ′

i and is denoted as do(x ′
i ). This action breaks all incoming causal

arrows to that variable Xi , as the external action is now the only one that defines
the value of the variable (see Fig. 5.4), and keeps all other causal arrows untouched.
The difficulties in performing such arrow-breaking interventions lies in the fact that
it is required to have some background knowledge on the system carrying the causal
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Fig. 5.4 Intervention
model: The causal model for
our intervention on the
outcome of Alice, A. This
breaks all the incoming
arrows to the variable A

influences; the system onwhich the measurements occur. This is because there might
be some hidden common causes, which due to our lack of knowledge, we do not
manage to break with our intervention. To imagine this, think of a situation where the
parties share some correlations due to some shared input state using another system
than the ones considered, or the same systems but a different degree of freedom than
the one considered (or even a hidden variable of that system). These correlations
can be used in combination with the measurements to produce the observed corre-
lations. Hence, by breaking all incoming causal arrows with our intervention, does
not exclude any incoming causal arrow using another system or degree of freedom.
This possibility cannot be excluded from the statistics alone, but in our case we shall
regard only the local degrees of freedom and that they behave according to quantum
mechanics. Such assumptions are common in quantum steering scenarios and semi-
device-independent quantum cryptography [21], where the devices of at least one of
the party’s measurement stations can be trusted to follow quantum mechanics.

Let us now see what the theoretical predictions are for our experiment. Recall
that our experiment is the usual Bell-scenario, where we allow for the possibility of
a causal link from one outcome to the other. In particular we want to intervene on
one outcome and observe any changes in the statistics of the other. Obviously, there
can be a small or a large change in the statistics; the maximal shift in the probability
distribution of B upon intervention on A permit us to quantify the strength of the
causal link [1]. We use the so-called average causal effect (ACE) [12, 19],

ACEA→B = sup
b,y,a,a′

|p(b|do(a), y) − p(b|do(a′), y)|, (5.6)

which is a modification of the measure CA→B used in Ref. [1]. The latter requires
knowledge about the hidden variable, whereas ACEA→B does not and is therefore
experimentally accessible. The average causal effect satisfies the same relation as
CA→B in Ref. [1], namely,

ACEA→B ≥ max [0, (S2 − 2)/2] , (5.7)



116 5 Experimental Test of a Classical Causal Model for Quantum Correlations

where the maximum is taken over all eight symmetries of the CHSH quantity under
relabelling of inputs, outputs, and parties [18]. The quantity S2

S2 = 〈E00〉 − 〈E01〉 − 〈E10〉 + 〈E11〉 (5.8)

(where 〈Ea,b〉, is the expectation value, given the settings of the parties, {a, b} =
{0, 1}) and that for the CHSH inequality we have S2 ≤ 2. This means that if there is
no violation of the inequality, then the ACEA→B = 0 in order for the correlations to
be explained by the causal model—something that makes sense since no violation
means that we can explain the correlations anyway. In any other case, the average
causal effect has to be larger or equal to a quantity proportional to the CHSHviolation
achieved by the correlations. This also makes sense as the more ‘quantum’ the cor-
relations are (the stronger the entanglement, the stronger the violation) the stronger
the causal link is required to be to obtain a causal explanation of the correlations
(Fig. 5.5).

We experimentally implemented a Bell-scenario with CHSH measurement set-
tings, and performed interventions on the outcome of one station while observing
the statistics on the outcomes of the other station. A schematic of the setup is shown
in Fig. 5.5. The prepared system is pairs of photons prepared in an entangled state
cos γ|HV 〉 + sin γ|V H〉 in the polarization degree of freedom. H and V correspond
to horizontal and vertical polarizations respectively, and γ is the polarization angle of
the pump beam, which continuously control the degree of entanglement, as measured
by the concurrence, C = | sin 2γ| [22].

The protocol for our two parties, Alice and Bob, is the following: both parties
perform their two measurement settings (with two outcomes each) required for the
CHSH inequality. The measurement settings measure in the linear-polarization basis
(H − V basis), which corresponds to the equatorial plane of the Bloch sphere, see
Fig. 5.6. Aswementioned before, we allow for Bob to be in the causal future of Alice,
by adding a 2 m fibre delay before Bob’s measurement station. The measurement
settings for each party is a half-wave plate (HWP) at one of the two usual angles for
a maximum violation of the CHSH. Their detection apparatus is a Polarizing Beam
Splitter (PBS); each of the two outputs are pointing to an Avalanche Photo Detector
(APD) that detect H or V photons. Recall that an intervention on Alice’s outcome
A needs to break all relevant incoming arrows on that variable and deterministically
force the variable to take a particular value. To do this, we cannot simply project the
incoming state into any linear combination of H and V because that would break
the entanglement of the input state. What we can do though is rotate the state of
the incoming photon of Alice to circular polarization states |R/L〉= 1√

2
(|H〉±i |V 〉),

using a quarter-wave plate (QWP) at±45◦. This operation, within some experimental
precision, erases all relevant information about the setting that Alice used tomake her
measurement, in the H − V plane. Right after, we project the state in the eigenstates
ofAlice’s PBS, |H/V 〉—which forces one of the two outcomes A = ±1. This is done
with a polarizer (POL) aligned with the PBS. Hence, we can force the outcomes of
A to be 1 or −1, independent of what they would have been if the intervention
part (rotation to |R/L〉 states and projection back to |H/V 〉 states) was not there.



5.4 Experiment 1: Interventional Method 117

Fig. 5.5 Our experimental setup. The Sagnac source with a periodically poled KTiOPO4 (ppKTP)
crystal: The source of our entangled pairs of photons consists of a pump laser at 405nm (depicted as
purple) followed by ‘bat-ear’ polarization controllers (a set of three fiber coils which can be rotated
around the input fiber’s axis) and a HWP which controls the incoming polarization and eventually
the degree of entanglement of the source. The horizontal part of the incoming beam goes though
the PBS and through the ppKTP where a pair of |HV 〉1 photons are created (the subscript denotes
that the original photon came though the port 1 of the PBS), which turns into a pair of |V H〉1 after
the HWP in the Sagnac. The H1 part goes to Alice and the V1 part to Bob. Now the vertical part of
the incoming beam goes in the opposite direction: exits the BPS from port 2, turns into horizontal
after the HWP, goes thought the ppKTP where a pair of |HV 〉2 photos are created, and finally exit
the PBS with the V2 part going to Alice and the H2 part going to Bob. The pairs of photons created
in the ppKTP have half the energy (and frequency, hence double the wavelength, depicted as red)
of the incoming photon. The dichroic mirror is transparent on the pump wavelength and reflective
on the generated one

This corresponds to operations of the form |H/V 〉〈R/L|. Themeasurement bases for
Alice and Bob, as well as the setting of the intervention POL and QWP were chosen
randomly using quantum random numbers from the Australian National University’s
online quantum random number generator based on Ref. [23].

Each party owns twoAPDs, and one of each clicks for each pair of photons. These
single-photon clicks are registeredwith anAIT-TTM8000 time-taggingmodule. This
is an apparatus that attaches a time stamp to each click of an APD, with a temporal
resolution of 82 ps. This was done to identify the pairs of photons, or coincidences,
arriving in the twomeasurement stations. An algorithmwas written on how to extract
this information. Outcome probabilities, used to estimate ACEA→B, were computed
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Fig. 5.6 The Bloch sphere:
where we see the plane on
which the measurements
settings measure and the
operation of the QWP, which
is part of the intervention

from a total of 48,000 coincidence counts and no more than one event was registered
for each set of random choices for X,Y , as well as the two elements of I .

Result: We calculated the observed average causal effect as a function of the CHSH
valuesmeasured for a range of entangled states (by varying the polarization angle γ of
the pump beam, before the generation of the single-photon pairs). All measured val-
ues are ACEA→B = 0.02+0.02

−0.02 and largely independent of the observed CHSH viola-
tion. The calculated versus the observed average causal effect is depicted in Fig. 5.7.
Note that the theoretical quantity we are trying to observe is bounded from below,
which makes the value zero unachievable in the presence of experimental imperfec-
tions andfinite counting statistics. Taking this into account, all data liewithin 3σ noise
due to Poissonian counting statistics—we expand on this matter on the Supplemen-
tary Materials of the related paper [3]. All quoted uncertainties were obtained from
Monte Carlo simulations of the Poissonian counting statistics and correspond to the
0.13th and 99.87th percentile, respectively, which, in the case of normal distributed
variables, would correspond to 3σ confidence regions.Within our experimental capa-
bilities, we found that all CHSH violations above a value of S2 = 2.05 ± 0.02 cannot
be fully explained with the help of a direct causal link from one outcome to the other.
In other words, the potential causal influence fromAlice’s outcome to the outcome of
Bob, is not sufficiently strong to account for the observed correlations or the observed
CHSH violation. We remind that quantum mechanics predicts zero causal influence,
a value which we reached within the experimental error.
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Fig. 5.7 Observed average causal effect: ACEA→B, for different values of the measured CHSH
violation. Any value of ACEA→B below the red dashed line, given by Eq. (5.7), is insufficient causal
influence to explain the observed CHSH violation. Note that the quantity ACEA→B is bounded from
below by 0, which explains the asymmetric error distributions. The blue shaded area represents the
3σ region of Poissonian noise. All error bars represent the 3σ statistical confidence obtained from
Monte Carlo simulation on the Poissonian counting statistics. From [3]. Reprinted with permission
from AAAS

5.5 Experiment 2: Observational Method

Although observational methods for causal inference are widely employed, they do
not always provide a conclusive argument to confirm or rule out certain causal mod-
els, because they do not yield enough information about the underlying causal model.
However, when they do, it is a preferablemethod because of the strength of the result-
ing claims on the causal structure. This is because this method is device-independent:
no matter what the description of the studied degrees of freedom is, or what the
parties’ devices are, observation of certain correlations can provide irrefutable con-
straints on the underlying causal structure. By contrast, aswe have seen, interventions
can be employed when mere observations fail to provide conclusive answers on the
causal structure. In the studied CHSH scenario we saw that interventions were nec-
essary to distinguish direct causation from common-cause correlations. However,
this comes at the cost that the intervention relies on the quantum description of the
degree of freedom responsible for the outcome A—polarization in our case. Hence
the interventional method is device dependent and cannot be employed to test arbi-
trary hidden-variable models. We show in this section that we can go beyond the
CHSH scenario and woulds allow us to perform a device-independent test of any
class of models with an arbitrary strong causal influence from one outcome to the
other. This will be through the violation of a new Bell-type inequality derived in
Ref. [1], which rules out such causal models.

Consider the situation where each of the two parties can choose now between
three possible settings, with two outcomes each. As shown in the work of Chaves
et al. [1], any correlations compatible with the model in Fig. 5.3 must now satisfy the
following inequality

S3 = 〈E00〉 − 〈E02〉 − 〈E11〉 + 〈E12〉 − 〈E20〉 + 〈E21〉 ≤ 4. (5.9)
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The inequality is symmetric under exchange of the parties and it is satisfied by any
model compatible with a causal link between the parties’ outcomes, or anymixture of
them (this is discussed in the SupplementaryMaterials of the relevant paper [3]). This
allows us to test the model in Fig. 5.3 in a device-independent way and irrespective
of any temporal ordering of the parties.

To test inequality (5.9), each party performs measurements on their incoming
system along one of three directions in the equatorial plane of the Bloch sphere
(Fig. 5.6), represented as O = cos(θ)Z + sin(θ)X . These measurements are imple-
mented using the setup in Fig. 5.5 with the intervention part removed. The specific
measurement settings to achieve a maximum violation of the inequality (obtained
from numerical results in Ref. [1]) are: θA

0 = −π/6, θA
1 = 7π/6, and θA

2 = −π/2 for
Alice and θB

0 = −π/3, θB
1 = π/3, and θB

2 = π for Bob. Using these measurement
settings we obtain

S3 = 3

2

√
3(1 + sin(2γ)) (5.10)

Note that since the concurrence is C = |sin(2γ)| (which is related to the degree of
entanglement), this corresponds to a linear relationship between S3 and the concur-
rence of the prepared state. Figure5.8 shows the observed violation of inequality (5.9)
as a function of the parameter γ of the used quantum state. The value of S3 oscillates
between 3

√
3 and 0, reaching the maximum for the maximally entangled state at

γ = 45◦ (with C = 1).

Result: We observed a value of up to S3 = 5.16+0.02
−0.02, corresponding to a violation of

Eq. (5.9) bymore than 170 standard deviations. This observationalmethod completes
the interventional method. The latter, rules out outcome-dependent causal models
in the CHSH scenario but requires additional assumptions on the underlying causal
mechanisms (i.e. that there are no hidden causal mechanisms acting through hidden
variables on the examined degree of freedom). However, this observational result
rules out outcome-dependent causal models without any additional assumptions,
and is valid for any scenario with more than two settings. Hence, in a Bell scenario,
a direct causal influence from one outcome to the other cannot explain quantum
correlations.

5.6 Conclusion

Our results show that a causal link between the outcomes of two parties in a Bell
scenario is found to be insufficient to explain CHSH correlations; ruling out this class
of causal models. Furthermore, even if that causal link was there, and is mediated
through some experimentally inaccessible hidden variables, we demonstrated that
the correlations arising in any more-than-two settings scenario cannot be explained
by such a causal influence, no matter how strong. Both experiments rely on the
fair-sampling assumption (see Supplementary Materials of the relevant paper [3]
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Fig. 5.8 Input state and S3 valuewith fixed or non-fixedmeasurement settings: The orange data
points are observed using a fixed measurement scheme, the one that is optimal for the maximally
entangled state where γ = 45◦. The orange dotted line represents the corresponding theoretical
prediction. The blue data points and blue dashed theory line correspond to the case where the
measurement settings were the optimal for the prepared state (see supplementary materials of the
relevant paper [3] for the analysis). The black line represents the bound of inequality (5.9): any
point above the line cannot be explained by a causal model of the Fig. 5.3. All error bars correspond
to 3σ statistical confidence intervals. From [3]. Reprinted with permission from AAAS

for further discussion). Hence, we demonstrated that such causal models—local or
nonlocal—are ruled out as candidates to explain quantum correlations.

Besides the fundamental importance of this work—looking for a causal mech-
anism for quantum correlations—our results could have applications in quantum
cryptography scenarios where the secrecy of the measurement outcomes cannot be
guaranteed. To see this, consider a one-sided device-independent scenario where
Alice’s laboratory is trusted, but not Bob’s. For example, an eavesdropper, Eve,
could control Bob’s devices and the source of particles. In a standard quantum key
distribution protocol, Alice and Bob would start by certifying that they share entan-
glement, by performing measurements to violate the CHSH inequality. However,
Eve, using her knowledge on the outcomes of Alice (Alice shares them with Bob to
calculate the inequality violation, and so Eve receives them since she’s controlling—
or impersonating—Bob), she can calculate the outcomes she is supposed to obtain to
simulate such a violation. Alice can reveal such an attack by performing interventions
on her measurement outcome and observing a non-zero value of ACEA→B. Alterna-
tively, Alice and Bob could use inequality (5.9) to certify shared entanglement and
prove that there is no Eve. This is because Eve cannot simulate the outcomes of Bob,
by knowing the outcomes of Alice.

Our methods of investigation can be used to further explore other classes of causal
models, for example, allowing for retrocausal influences or relaxations of measure-
ment independence [1, 6–11, 24]. However, one could take a completely different
approach to causality when it comes to quantum systems, the one developed around
the process matrix formalism used for quantum causal models [25], or using quan-
tum combs [26]; we will use the former. Quantum causal models are still described
by DAGs, with the difference that the nodes do not represent classical variables any
more but quantum operations made on quantum systems. In this approach, a quan-
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tum causal model for a Bell scenario is shown in Fig. 5.2 with � being the input
Bell state, X,Y being some input states of Alice and Bob which dictate which set-
ting they will use and A, B being the quantum operations of the parties which yield
their outcomes. Although this approach, does not provide a classical explanation to
quantum correlations, its applications lie on the exciting new field of quantum causal
discovery. It provides the first causal modeling framework that can be used for causal
discovery of arbitrary causal structures Ref. [27]. The excited reader is now urged to
the next and final chapter.
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Chapter 6
A Quantum Causal Discovery Algorithm

6.1 Back Story

After having finished a few projects that further our understanding of the concept
of causality and the process matrix formalism, we were already aware that this
framework can be used for causal discovery with quantum systems, even if the
rigorous ideaswere notwritten yet [1].By causal discovery,wemean a tool thatwould
take us from data for a set of variables to the complete causal mechanism (causal
model) that produces the data. We soon realized that the actual steps that would lead
someone from data to a causal model, although rather simple, were numerous and
widely varying from case to case. We could have simply written the most general
instructions on how one can accomplish this task, or, even more exciting, write an
algorithm—the first of its kind—that would be available to anyone. So this was the
task we took upon: write a quantum causal discovery algorithm. The task seemed
simple at the time, but soon we saw its complexity. Nonetheless, some interesting
results surfaced on the way: the different levels of causal information the algorithm
outputs, the fact that it detects Markovianity (a problem already worth to solve on its
own), its potential application to current and future research and finally its potential
extension to be suitable to a much wider variety of applications, like discovering
latent variables. Our results are on Ref. [2] and the code is available on [3].

6.2 Introduction

Discovering causal relations lies at the heart of physics. While observing physical
systems, there is always the question ‘how did that come about?’ and the answer is a
series of eventswhere one causes the other.While this is a natural tool for formulating
physical processes, only recently was this tool rigorously formalized [4, 5]. By
adding to probability theory the concept of interaction with some external system,
it was possible to formally define what is causation: it is correlation with an extra
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ingredient—that of intervention. This led to the development of the framework for
causal discovery. Its core ingredients are causal mechanisms that are responsible for
correlations between observed events, with the possibility of external interventions
on the events.

The concept was not new of course. From simple correlations, like rain and wet
land, one can understand that rain causes the land to get wet and not the reverse.
To get to this conclusion we need statistics: we can make the land wet and see if
rain comes; we can simulate rain with a big hose and see if the land gets wet. The
reasoning is the following: it is the fact that we can make the one event happen (with
intervention) or the other and observe the result, that defines causation. Hence, it
is the possibility of interventions that provides an empirically well-defined notion
of causation, distinct from correlation: an event A is a cause for an event B if an
intervention on A results in a change in the observed statistics of B.

The applications of this simple rule is what allows us to do causal discovery. How-
ever, increasing the number of variables makes the task difficult. For two variables,
say A and B, if they appear correlated, then intervention on Amight change the statis-
tics on B or vice versa; two intervention-experiments are required. For three variables
A, B and C , all possible causal links should be checked for any pair of variables, but
also conditionally on the third variable. For example, to check a link between A and
B we proceed as above, with the extra step that for every intervention-experiment, we
set the variable C to take a particular value, and repeat the intervention-experiment
for every possible value ofC . The whole experiment has to be repeated by permuting
all the parties. However, as causal links are established some steps can be dismissed,
i.e. if a link from A to B was found, there is no need to check a link from B to A;
or if C is a common cause for A and B then it is needless to test any link towards
C . This is for the case where the parties have a single fixed causal order between
them. If they share a probabilistic mixture of causal orders (or even dynamical as
we discuss later) then more experiments are needed. This problem sounds ideal for
a computer. In that case, all we need to do is perform all possible interventions on
all variables and input the results in some algorithm that compares the statistics after
each intervention and finally outputs a causal model for the variables. Voilà, a causal
discovery algorithm.

The output of a causal discovery algorithm is a causal model. A causal model is
typically defined as a set of direct-cause relations and a quantitative description of
the corresponding causal mechanisms. The causal relations are represented as arrows
in a graph and the causal mechanisms are usually described in terms of transition
probabilities (Fig. 6.1). The objective of causal discovery algorithms is to infer a
causal model based on observational and interventional data. Such algorithms have
found countless applications and constitute one of the backbones in the rising field
of machine learning.

But what about developing a causal discovery algorithm for quantum systems?
In simple quantum experiments, causal relations are typically known and well under
control. However, the fast growth of quantum technologies leads inevitably to net-
works of increasing size and complexity. Appropriate tools to recover causal relations
might become necessary for the functioning of large, distributed quantum networks,
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Fig. 6.1 Causal relations:
An example of a causal
relation and its
representation in a graph

A B mechanism

B p(A|B)

as it is already the case for classical ones [6]. Causal discovery might further detect
the presence of “hidden common causes”, namely external sources of correlations
that might introduce systematic errors. From a foundational perspective, the possi-
bility of discovering causal relations from empirically well-defined data opens the
possibility of recovering causal structure from more fundamental primitives.

Classical causal discovery algorithms, however, fail to discover causal relations in
quantum experiments [7]. A considerable effort has been recently devoted to resolve
this tension and transfer causal modeling tools to the quantum domain [8–17]. This
has led to the formulation of a quantum causal modeling framework [1, 18]. (See
Refs. [19, 20] (a paper and a Ph.D. thesis) for a broader philosophical context.)

Herewe introduce a first algorithm for the discovery of causal relations in quantum
systems. The starting point of the algorithm is a description of a quantum experiment
(or “process”) that makes no prior assumption on the causal relations or temporal
order between events [21]. Given such a description, encoded in a process matrix,
the algorithm extracts different levels of causal information about the events in the
experiments. It determines whether or not they are causally ordered, namely whether
they can be organised in a sequencewhere later events cannot influence earlier ones. If
a causal order exists, the algorithm finds whether all common causes are modelled as
events in the process matrix—a property expressed by the condition ofMarkovianity,
as defined in Ref. [1]. If the process is Markovian, the algorithm outputs a causal
model for it: a causal structure (in the form of arrows connecting events) together
with a list of quantum channels and states that generate the process.

The complexity of our algorithm scales quadratically with the number of events,
although the size of the problem itself (the dimension of the process matrix) is
exponential. This suggests that the algorithm can be used efficiently given some
prior assumption that allows an efficient encoding of the input to the code. We
further comment on possible extensions of the algorithm to deal with processes
that are not Markovian, not causally ordered, or that follow different definitions of
Markovianity [18].We provide the fullMatLab code of the algorithm, aMathematica
file to generate process matrices of random causal structures for testing the code, and
a manual with instructions [3].
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6.3 Quantum Causal Models

To do causal discovery, we need data. Classical causal discovery algorithms take
typically as input a joint probability distribution for a set of events. This could be
simply observational data, or it could be conditioned on external interventions on the
events, or the input may be some property of that distribution, like a set of conditional
independences. However, when we try to obtain something similar in the quantum
case, we immediately run into a problem. The typical description of quantum systems
involves the knowledge of a state evolving in time and the temporal ordering of the
events is inherently known. For this reason, a different framework must be employed
to formulate the problem of quantum causal discovery.

We will use a formulation of quantum mechanics that can assign probabilities
to quantum events without any prior knowledge of their causal relations [21]. The
process matrix framework is extensively presented in Chap. 2, in Sect. 2.4. Briefly,
in this framework, a quantum event A is: an experimenter inside a closed laboratory
performs some quantum operation on an input system using some quantum instru-
ment and sends out an output system. Formally, it is associated with an input and an
output Hilbert spaceHAI andHAO respectively—and is represented by a completely
positive (CP) map MAI→AO : L(HAI ) → L(HAO ), where L(HS) is the space of
linear operators over the Hilbert space of system S. A quantum instrument is the col-
lection of CP maps J A = {MA}, such that ∑

MA∈J A

MA is a CP and trace-preserving

(CPTP) map. J can be thought to be the choice of operation and the individual
map is the associated measurement outcome. For example, a map can be a unitary
transformation, a more general CPTP map, or a measurement of the input system
followed by a preparation of the output system.

The main result of the process matrix framework is the following: for a set of
parties {A1, · · · , An}, the joint probability of their CP maps to be realized, given
their instruments, is a function of their maps and some matrix that mediates their
correlations:

p(MA1
, · · · ,MAn |J A1

, · · · ,J An
) =

Tr[W A1
I A

1
O ···An

I A
n
O (MA1

I A
1
O ⊗ · · · ⊗ MAn

I A
n
O )]. (6.1)

Using a version of the Choi-Jamiołkovsky (CJ) isomorphism [22, 23], the CJ matrix
MAI AO ∈ L(HAI ⊗ HAI ), isomorphic to a CP map MA : L(HAI ) → L(HAO ) is
defined as MAI AO := [I ⊗ M(|φ+〉〈φ+|)]T , where I is the identity map, |φ+〉 =
∑dAI

j=1 | j j〉 ∈ HAI ⊗ HAI , {| j〉}dAIj=1 is an orthonormal basis on HAI and T denotes

matrix transposition in that basis and some basis of HAO . Finally, W A1
I A

1
O ,··· ,An

I A
n
O ∈

L(HA1
I ⊗ HA1

O ⊗ · · · ⊗ HAn
I ⊗ HAn

O ) is a matrix that lives on the combined Hilbert
space of all input and output systems of the parties and is called process matrix.

But what does this framework have to do with causal models? In a causal model,
causal relations between events are mediated through some mechanism that allows
signaling and is represented by a CPTP map that maps the output of an event to
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the input of another event. In the process framework, this mechanism corresponds
to quantum channels that allow for correlations between the events. These quantum
channels are represented by some properties on the process matrix. In particular, we
will see later that some properties of the process matrix map perfectly to properties
of the underlying causal model. To go back to the very first sentence of this section,
that we need data to do causal discovery, we will see that this data helps us obtain
the process matrix, and this exactly is the input to the causal discovery algorithm.

In this chapter,we are interested in situationswhere causal relations define a partial
order, which we call causal order. We identify causal relations with the possibility
of signaling: if the probability of obtaining an outcome in laboratory B can depend
on the settings in laboratory A, we say that A causally precedes B, and write A ≺ B.
The process matrices that define a causal order between the events are called causally
ordered and are the subject of our investigation as it is those that encode a causal
model. In this Chapter, we will refer only to those process matrices, unless otherwise
stated.

6.3.1 Graphical Representation for the Process Framework

The causal structure encoded in the process matrix can be represented by a Directed
Acyclic Graph (DAG): A directed graph is a pair G = 〈V, E〉, where V = {V1, ..., Vn}
is a set of vertices (or nodes) and E ⊂ V × V is a set of ordered pairs of vertices,
representing directed edges (Fig. 6.2). A directed path is a sequence of directed edges
where, for each edge, the second vertex is the first one in the next edge. A directed
cycle is a directed path that ends up in a vertex already used by the path. A DAG
is a directed graph with no directed cycles. As we use a DAG to describe a causal
structure, we refer to nodes as parties and to directed edges as causal arrows.

Following Ref. [1], we define a quantum causal model by associating a specific
type of process matrix to a DAG. The process matrix framework describes a situation
where a number of events, or parties, are correlated through some mechanisms. To

Fig. 6.2 DAG: A typical
representation of a Directed
Acyclic Graph (DAG)

V1

V2

V4

V3



130 6 A Quantum Causal Discovery Algorithm

represent this in a DAG, we represent each party with a node in the DAG and their
causal relation with an arrow (sometimes referred to as causal arrows). Remember
that parties are associated with input and output systems and the same now holds for
the nodes in the DAG. If the node has more than one outgoing arrow, then the output
space is composed of subsystems, with one subsystem for each arrow. We refer to
them as output subsystems. We define the parent space �A of a node A as the tensor
product of all output subsystems associated with an arrow ending in A. A Markov
quantum causal model is then defined by a collection of quantum channels, one for
each node A, connecting the parent space of A to its input space.

Now let us see what a process matrix whose causal structure is represented by
a DAG looks like. It will be a tensor product of three types of factors: input states
for the set of parties with no incoming arrow in the DAG, channels connecting each
input system of a remaining party with its parent space, and finally the identity matrix
1 for the output systems of the set of parties with no outgoing arrows in the DAG.
For example, if {F1, F2, ..., M1, M2, ...L1, L2, ...} is a set of parties where F , M
and L is the label for the three set of parties described above (first, middle, and last),
respectively, then their process matrix would be

WF1
I F

1
O ... = ρ

F1
I

1 ⊗ ρ
F2
I

2 ⊗ · · · T �M1
M1

I ⊗ T �M2
M2

I ⊗ ...1L1
O L

2
O .... (6.2)

The same representation of Markovian processes has recently been used in the study
of open quantum systems [24].

The above condition for the causal structure of the process matrix to be described
by a DAG is a quantum generalisation of the Markov condition for classical vari-
ables and so it can be called the quantum Markov condition [1]. (We will comment
below on a slightly different possible definition [18].) Such a process matrix is also
causally ordered, with a partial order defined by the DAG. However, the class of
causally ordered process matrices is strictly broader than Markovian ones, and they
are represented by quantum combs [25].

6.4 Quantum Causal Discovery

Classical causal discovery requires data obtained by performing interventions on
the nodes. For quantum causal discovery what is needed is the process matrix W,
obtained by (6.1) given the operations of the parties and instruments. So overall,
given a W, we can discover the DAG, and with these two we have the underlying
quantum causal model.

Before we investigate how to discover the causal model given a process matrix, let
us clarify how one obtains that matrix. In Eq. (6.1) we see that the process matrix can
be obtained knowing the joint probabilities of all possible maps of a party given their
instruments (left-hand side of the equation), and the actual maps of the parties (half of
the right-hand side). This is just like quantum state tomographywhere, using theBorn
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rule, one can reconstruct the quantum state by performing informationally complete
measurements on it. In a similar way, by obtaining data where the parties perform
informationally complete instruments, one can reconstruct the process matrix [1].

6.4.1 The Linear Constraints

A process matrix of the form of Eq. (6.2) satisfies a set of linear constraints. This set
identifies a DAG—in fact, each constraint corresponds to a particular element in the
DAG. There are two types of constraints.

Open output: A party A has an open output when in the process matrix W there
is an identity matrix on the corresponding output system AO . This translates to the
following linear constraint:

1̃AO ⊗ TrAO W = W (6.3)

where 1̃AO = 1AO/dAO and dAO is the dimension of the system AO . When this
condition is satisfied, the party A cannot signal to any party and is considered last. In
the casewhere the output systemof the party is decomposed into subsystems AOi , i =
1, · · · , n, each corresponding to an outgoing arrow, then the corresponding identity
matrix in the process matrix lives on the Hilbert space of that output subsystem AOi .
We also call this subsystem open and the linear constraint is

1̃AOi ⊗ TrAOi
W = W (6.4)

Channel: A quantum channel between the input of a party A and its parents space�A

is represented by a factor T �A AI in the process matrix, as we have alreadymentioned.
It is a positive matrix that lives on the tensor product of the Hilbert spaces of the
output and of the input system involved, and has the property that upon tracing out
the output of the channel (the input of A) what remains is identity on the input (the
space of output systems �A).

TrAI T
�A AI = 1�A

. (6.5)

This property is necessary and sufficient for the channel to be trace preserving and
we use it to discover channels in the process matrix: we trace out the input of A,
AI , and we check whether in the remaining process matrix there is now—and not
before—identity on the output system of a given party B. This describes a linear
constraint that a process matrix satisfies when there is a channel from the output of
B to the input of A

1̃BO ⊗ TrBO (TrAI W ) = TrAI W. (6.6)



132 6 A Quantum Causal Discovery Algorithm

If the output of party B is decomposed into subsystems, then we use the above
constraint for each subsystem separately, by replacing BO with every output subsys-
tem BOi

1̃BOi ⊗ TrBOi
(TrAI W ) = TrAI W. (6.7)

The maximal set of output systems and subsystems for which this condition holds is
the parent space of A, �A.

In the concrete implementation of the algorithm, the above equalities are tested
up to some precision defined by a small number ε, which can be adjusted depending
on the working precision. This is due to different numerical rounding of irrational

numbers that lead to errors—
√
2 is different to

√
2
2
/
√
2. Naturally, this number can

be adjusted to account for experimental inaccuracies.

6.4.2 Ze Code: Theory

The causal discovery code subjects the process matrix to the above types of linear
constraints and the set of them that are satisfied define the DAG.

The code takes as input: the number of parties, the dimension of each input system,
output system, output subsystem, and the process matrix.

Briefly the procedure of causal discovery can be summarized in three stages.
Stage 1: the code identifies the set of parties that are causally independent. This
determines if the process matrix is causally ordered. If it is, stage 2 proceeds to trace
out any open output subsystems and then to discover the causal arrows between the
parties. Stage 3 determines if the process Markovian and if it is, it outputs a DAG.
Below we expand on these three stages.

Non-signaling sets for a causally ordered W. Let us call a non-signaling set, a set
of parties that are causally independent, namely that cannot signal to each other. A
non-signalling set ismaximal if it is not a proper subset of another non-signalling set.
The first output of the algorithm is all themaximal non-signalling sets and their causal
order. This is done through the linear constraint that detects open output systems, in
Eq. (6.3). The set of parties whose output system satisfy the constraint is labeled as
last set. Note that each constraint has to be satisfied by the whole output system and
not by part of it, namely some subsystems. To determine the next set, the second last,
the code traces out the last set from the process matrix, and using the same constraint
it identifies the new last set, and so on. Note that the partition into maximal non-
signaling sets does not uniquely identify the partial order of the parties, in the sense
that it is not guaranteed that parties in different non-signaling sets can signal to each
other. What is guaranteed is that at least one party from a set X can signal to at least
one party in a succeeding set Y (Fig. 6.3). Note also that the partition into maximal
non-signalling sets is not unique, much like a foliation of space-time into space-like
hypersurfaces. The way we define this partition is through steps of finding out who
is the last party. We are led to a different partition if we go through steps of finding
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Fig. 6.3 Maximal non-signaling sets: Imagine the output of the code so far is the above groups
of parties, representing the non-signaling sets, being the lower one the first set. The actual partial
order may be the one represented by the arrows. We can see that although party 1 is a set preceding
the set in which party 5 belongs to, this does not mean that there is a causal arrow between them.
Same with party 1 and 6

out who is first. In both cases it is still guaranteed that there is a causal arrow from
every party in a set X to at least one party in the succeeding set Y .

The process matrix is causally ordered if and only if the algorithm succeeds in
grouping all parties in maximal non-signaling sets. This is because, given the non-
signaling sets, we can define a total order among the parties by adding arbitrary
order relations among members of each set. For example, we can order the parties
in different time steps where when A ≺ B, A occurs at a time before B, and when
A||B then we pick an arbitrary time ordering (Fig. 6.4). With the parties ordered in
this way, the process matrix satisfies the condition defining a quantum comb [25].
This is a recursive version of Eq. (6.3), that holds for the output of each system
after all systems that come after it are traced out. A central result in the theory of
quantum networks is that, whenever this condition holds, the corresponding process
can be realised as a channel with memory [25–27]. Thus, this part of the algorithm
determines whether the input process matrix has a physical realization as a causally
ordered process.

Open output subsystems and causal arrows. The code checks each output sub-
system to identify if it is open, using the linear constraint in Eq. (6.4). Each found
open subsystem is traced out from the process matrix, keeping track of the label
of the party and the label of the subsystem, for example, subsystem 3 of party 2.
Keeping track of open subsystems is what allows the algorithm to find a minimal
DAG, namely without extra arrows, as discussed below.

After the algorithm has traced out all open output subsystems and has established
the maximal non-signaling sets of the parties, it is time to determine the DAG. The
algorithm is checking all possible causal arrows between pairs of input system of a
party and an output system of another party, where each party belongs to a different
non-signaling set. For each suchpair of parties, say B and Awith the former belonging
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Fig. 6.4 Total causal
order: Starting from the
DAG in Fig. 6.3, we can
order all events in time,
obtaining a total order of the
parties, by putting an
arbitrary order between
parties in the same
non-signaling set

1

2

3

4

6

5

t1

t2

t3

t4

t5

to a set preceding the latter, the code looks at the output system of B and at the input
system of A and checks if the linear constraint in Eq. (6.6) is satisfied. If a party’s
output system is divided into subsystems, then each subsystem is checked using
the linear constraint in Eq. (6.7). Every time the constraint is satisfied, an arrow is
associated with the corresponding systems and the output system or subsystem is
marked as used and is not being checked again. The collection of all output systems
and subsystems that satisfy the constraints for a single input system of a party A
uniquely identifies the parent space of A, �A. The code first checks pairs of parties
that belong to adjacent non-signaling sets, as it is guaranteed to exist at least one
causal arrow. Then all the remaining pairs of parties are tested, namely those from
distant sets, that still have an unused output system or subsystem.

DAG of a Markovian process. At this stage, the code is ready to output a DAG, for
a Markovian process. What remains is to check if it is indeed Markovian, namely
if the process matrix is of the form of Eq. (6.2). To do so, the code constructs a
test-matrix Wtest that is Markovian with respect to the found DAG: it contains all
(and only) the factors as in Eq. (6.2) that correspond to the elements of the DAG.
There are three kinds of these elements: first parties, causal arrows, and last parties;
the corresponding terms on the process matrix are input states for the first parties,
channels that live on the input and output systems and subsystems of the associated
parties, and identity matrices on the output system of the last parties, respectively.
To construct the test process matrix, these factors are extracted from the original
process matrix by tracing out all systems except the desired ones. If the process is
Markovian, then the test-matrix will be equal to the original process matrix that was
input to the code.

For example, for a bipartite process, the codemay have found aDAGwith a causal
arrow from A to B. Then it will construct the test-matrix with an input state for A,
a channel from A to B and identity for the output system of B. These are extracted
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from the process matrix, by tracing out all but the desired system, for example, for
the input state and the channel, we have the following.

ρ AI = TrAI
W (6.8)

T AO BI = TrAO BI
W

where AI means that from the set of all systems involved in the process, this is
the subset complementary to the system AI . The test-matrix would then be Wtest =
ρ AI ⊗ T AO BI ⊗ 1BO . IfW = Wtest, then the processmatrix isMarkovianwith respect
to the DAG found by the algorithm.

6.4.3 Minimality of the Output DAG

The code is guaranteed to give a unique and minimal DAG for a Markovian process.
A processmatrix is said to beMarkovwith respect to theDAG if every channel (found
by Eqs. (6.6) and (6.7)) in the process matrix is represented by an arrow in the DAG.
However, aW can beMarkov to more than one DAG—some DAGs will have arrows
allowed by the causal order but there is no actual channel in the W corresponding
to this arrow. In other words, a W can be in the tensor product form of Eq. (6.2),
but with some factor of the form T �MMI = 1�M ⊗ ρMI , for some normalised density
matrix ρ. This represents a channel that always produces the state ρ. Hence, this W
is Markovian with respect to a DAG with arrows representing such channels, from
�M to MI , but is also Markovian to a DAG without such arrows. Clearly, the same
process matrix is still Markovian with respect to a DAG without arrows from �M

to MI .
If every arrow in the DAG corresponds to a non-trivial channel in the process

matrix, the DAG is called minimal. From another perspective, a DAG is minimal if,
by removing any arrow from it, then the W is not any more Markov with respect to
the resulting DAG.

The fact that the output of the code is always the minimal DAG is guaranteed
by the first step of the algorithm, where the open subsystems are established and
discarded. Indeed, an “extra arrow” in a non-minimal DAG would necessarily be
associated with an open subsystem—an identity tensor factor in the process matrix.
Since the presence of an arrow, condition (6.7), is not checked for open subsystems,
the algorithm will not output extra arrows.

Note also that, in [1], it was only proven that a DAG can be in principle recovered
under the additional assumption of faithfulness. Our algorithm does not require such
an extra assumption, proving that causal discovery is always possible for a quantum
Markov causal model.
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6.5 Complexity of the Algorithm

The dimension of the process matrix is given by the product of input and output
dimension of each party. Thus, the size of the process matrix would generally scale
exponentially with the number of parties. This is expected, as also the dimension of
ordinary density matrices would scale exponentially with the number of parties.

One can however consider situations where, under appropriate assumptions and
approximations, the physical scenario under consideration is described by a polyno-
mial number of parameters. Then, the main cost of the algorithm lies in the part that
searches for causal arrows between parties. This step tests condition (6.7) for pairs
of nodes—the number of tests required is thus quadratic in the number of parties.
Therefore, given an efficient encoding of the input process matrix, the algorithm
scales polynomially with the number of parties.

6.6 Non-Markovian Processes

A Markovian process is one with a process matrix of the form of Eq. (6.2), and is
represented by a DAG. In a non-Markovian process the process matrix is not of that
form, i.e. it is not a tensor product of factors representing input states for the parties
with no incoming arrows, channels, and identity matrices for the output of the parties
in the last set. In other words, in a non-Markovian process, these factors alone—or
their representation in aDAG—cannot account for the observed correlations between
the events.

6.6.1 Latent Variables

If the code outputs that the process is causally ordered but non-Markovian, it may
be the case that there are extra nodes, not considered in the process, which affect the
local outcomes of the nodes considered. These are called latent variables [1].

For example, the outcomes of quantum measurements performed in some mea-
surement stations (nodes) in a laboratory, may be affected by the temperature or
maybe another system is leaking into one of the stations, like stray light affecting the
detection part and causing correlated noise. If these are producing significant change
in the data—higher than the noise tolerance in the code—the process will appear
non-Markovian.

To recover a causal model by introducing latent variables wewould need to extend
the algorithm such that it adds nodes and arrows until it finds that isMarkovian. Com-
putationally, this task can be hard because the code has to find the right combination
of the number of nodes needed, their position in the DAG and the exact channels
around them.However, although the original process is non-Markovian, the code still
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outputs the causal order of the parties for a causally ordered process matrix. From
that, one could make guesses about the right causal model, by introducing nodes
with specific input and output systems and channels connecting them to the rest of
the parties. To do this, one should add the corresponding factors into the currentWtest

and run the code using as input the updated number of parties, dimensions of systems
and Wtest as the process matrix and see if now the process is Markovian.

6.6.2 Mixture of Causal Orders

Another possible reasonwhy the process is non-Markovian is that it might be the case
that the processmatrix represents amixture of two ormoreMarkovian processeswith
different causal order, resulting in a non-causally ordered process matrix.1 There is
a Semidefinite Program (SDP) for this problem, that finds the right decomposition
[30]. For instance, for a bipartite process, the SDP would look like the following.

given W

find q (6.9)

such that W = qW A≺B + (1 − q)WB≺A

0 ≤ q ≤ 0

where WX≺Y denotes a valid process matrix where Y is last and therefore has a
factor 1YO . In the case with more parties, one simply has to write a decomposition
that includes all different causal orders for the given parties. Given a decomposition
of a process matrix as a mixture of causally ordered ones, one can apply the causal
discovery algorithm to each term in the decomposition.

6.6.3 Dynamical and Indefinite Causal Order

So far, we have seen that when events have a definite causal order, they can be
represented either by a fixed causal order process or by a mixture of causal orders.
However, it may be the case that the process matrix represents a situation of more
than two parties, where the causal order of some parties depend on the operations of
parties in their past. That is, a party may influence the causal order of future parties.
Such a dynamical causal order was studied in [31] where a definition of causality
was proposed, compatible with such dynamical causal order. For the tripartite case,
it was found that the process matrix describing such a situation should obey certain
conditions. However similar conditions were not found for the case of arbitrary

1A mixture of processes with the same causal order can be modelled as a causally ordered, non-
Markovian process with latent nodes acting as “classical common causes” [28, 29].
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parties. In such cases, the notion of causal discovery is not clear, as depending on
some events in the past, the DAG of future ones would change. Hence the output
would be different DAGs for different operations of certain parties. We do not know
if the discovery of those DAGs is possible.

6.6.4 Other Definitions of Markovianity

Our algorithm relies on the definition of quantumMarkov causal model of Ref. [1]. A
different definition was proposed in Ref. [18], where the output systems of the parties
are not assumed to factorise into subsystems in the presence of multiple outgoing
arrows. In Ref. [18], arrows in the DAG are still associated with a quantum channel
from the output space of the parent nodes to the input space of the child but, rather
than defining a factorisation in subsystems of the output space, multiple outgoing
arrows are more generally associated with commuting channels. For example, in a
tripartite scenario where A is a parent of both B and C , a Markovian process matrix
would have the form

W AI AO BI BOCICO = ρ AI ⊗
(
T AO BI
1 · T AOCI

2

)
⊗ 1BOCO , (6.10)

with the condition T AO BI
1 · T AOCI

2 = T AOCI
2 · T AO BI

1 . Thus, according to Ref. [18],
a Markovian process matrix does not need to be a tensor product but can more
generally be a product of commuting matrices. To distinguish the two definitions, we
will call tensor-Markovian and commuting-Markovian a process matrix that satisfies
the condition of Ref. [1] (used in our code) and Ref. [18], respectively. Note that
all tensor-Markovian processes are commuting Markovian, but the converse is not
true.2

Our algorithm could be adapted to discover the causal structure of commuting-
Markovian processes. Note that the strategy used in our code, to detect the parent
space of each node by checking (6.5), would not work. Indeed, tracing out BI from
matrix (6.10) does not result in a matrix with identity on AO . A possible approach
could be to instead detect all the children of each node A, namely all the nodes with
an incoming arrow departing from A. The children are then identified as the smallest
subset of parties C1, . . . ,Ck such that

1̃AO ⊗ TrAO

(
TrC1

I ,...,C
k
I
W

)
= TrC1

I ,...,C
k
I
W. (6.11)

2In Ref. [18] it is further assumed that input and output spaces of each node are isomorphic.
Thus, strictly speaking, not all tensor-Markovian processes considered here satisfy the definition
of Ref. [18], but only those with input and output of equal dimension. This difference is of little
consequence from the point of view of a causal discovery algorithm, since in any case the dimension
of each space has to be specified as input to the code.
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2 3 2 3

1 1

Fig. 6.5 Different definitions of Markovianity: A process that is Markovian according to
Ref. [18], e.g. for the DAG on the left, is generally described by a DAG with a latent variable
(filled node in the DAG on the right) according to the definition of Markovianity of Ref. [1] on
which our algorithm is based

So the code would have to find which parties have to be chosen such that when their
input systems are traced out, it leads to identity on the output of party A. As this
condition must be checked for subsets of parties, the number of tests is exponential
in the number of parties for the worst-case scenario. In contrast, we have seen that to
discover a tensor-Markovian causal structure a quadratic number of tests is sufficient.
Another potential complication is that our test for Markovianity relies on the tensor-
product form of the process matrices; it is not clear if there is a simple way to test
whether a process is commuting-Markovian.

An alternative approach is to retain the definition of tensor-Markovian processes
andmodel commuting-Markovian processes as non-Markovian ones. Indeed, since a
commuting-Markovian process is causally ordered, it can always be recovered from
a tensor-Markovian one by tracing out an appropriate number of latent nodes [1]. An
extension of our code to detect latent nodes could thus be used to detect the causal
structure of a commuting-Markovian process. In Fig. 6.5 we show an example of a
DAG of a commuting-Markovian process (left) and how that would be represented
as a tensor-Markovian (right) with a latent variable.

6.7 Conclusions

We have presented and provided an algorithm that can discover an initially unknown
causal structure in a quantum network. The first of its type, it is an important proof of
principle: it shows that causal structure has a precise empirical meaning in quantum
mechanics. Just as with other physical properties, it can be unknown and discovered.
This is of particular significance for foundational approaches where causal structure
is seen as emergent from more fundamental primitives. Causal discovery provides
the methodology to determine when and how causal structure emerges.

Causal discovery can also have broad applications for protocols based on large and
complex quantum networks. Our algorithm is guaranteed to find a minimal causal
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model for any Markovian process, namely a process in which all causally relevant
events are under experimental control, with no extra assumptions; this improves on
the results of Ref. [1], where the additional condition of faithfulness was invoked.
This may have to do with the comparison of classical and quantum causal discovery.
In classical causal discovery, the data may by observational or interventional and
faithfulness is required which means that one needs to believe that the data are
not generated in a way that some conditional independences are hidden. This is
because the data may be incomplete. However, in the quantum case we analyzed here
using the process matrix framework the data are complete and fully interventional:
they arise from informationally complete interventions made at each node. This
results to obtaining true conditional independences and no faithfulness condition is
needed. Hence, although our method of quantum causal discovery can be reduced to
the classical case for a ‘classical’ process matrix where the parties’ operations are
diagonal in some fixed basis, the reverse is not true, because it is unclear to define
observational data in our quantum case.

Another important use of our algorithm is to tackle the difficult problem of non-
Markovianity. An extensive body of research is currently devoted to the problem of
detecting andmeasuring non-Markovianity [32]. Our algorithmfinds a concrete solu-
tion to the first problem, namely it allows discovering when some external memory
is affecting the correlations in the observed system. Detecting non-Markovianity can
also have important practical applications for large quantum networks: the presence
of “latent nodes”, can indicate a possible source of systematic correlated noise in a
process, thatmight affect theworking of a quantumprotocol. It can further have appli-
cations in cryptography for detecting the presence of an eavesdropper. Note that, for
non-Markovian processes, the algorithm still recovers important causal information,
namely a causal order of the events.

Finally, our algorithm has promising possible extensions. A natural extension is
an algorithm that can make “good guesses” for causal structure in the presence of
latent nodes. Promising is also the extension of causal discovery tomixtures of causal
order, dynamical and indefinite causal structure.

Appendix: Ze Code: Implementation

What follows is a description of the different steps of the code, with a highlight on
the main stages that produce the different levels of information about the underlying
causal model: causal order, DAG and Markovianity. In certain cases, the intricacy of
the problem will be depicted with examples.
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Stage 0: Importing and Checking

The code begins with importing all the inputs: the process matrix, the dimension
of input and output systems and information about the existence and dimensions of
output subsystems.

It checks if there are systems with one dimension. In that case there would be
no factor representing them in the process matrix. This is because, the external
functions that the code uses (fromTonyCubitt) do not deal well with one dimensional
systems.Hence, for every one-dimensional system, a two dimensional identitymatrix
is inserted, and it is normalized when it is used as an input system.

After, the normalization of the process matrix is checked and it is normalized if
it was initially non-normalized. The code outputs this information in the command
window.

Stage 1: Causal Order

Definitions: A non-signaling set is a set of parties that are causally independent,
namely that cannot signal to each other. A non-signaling set is maximal if it is not a
proper subset of another non-signaling set.

A party A has an open output when in the process matrix W there is an identity
matrix on the corresponding output system AO . When this condition is satisfied, the
party A cannot signal to any party and is considered last.

A process matrix is causally ordered if and only if the algorithm succeeds in
grouping all parties in maximal non-signaling sets.

The next task is to establish the maximal non-signaling sets and their causal order.
The code checks the following constraint for every party, say A

1̃AO ⊗ TrAO W = W, (6.12)

where 1̃AO = 1AO/dAO and dAO is the dimension of the system AO . This constraint
checks for open output systems. It finds the parties that are last, which is the last non-
signaling set or ‘set1’. Once it establishes this set, it traces it out from the process
matrix (traces out all input and output systems of the parties from this set), and the
procedure starts again: find out the new set (the second last or ‘set2’) and so on. This
is a process implemented in a loop, where each run establishes set1, set2, etc, where
set1 is the last set, set2 is the second last, etc.

The procedure of establishing the sets stops when the number of parties that have
been used up in this process reaches the number of total parties. The initial number
of runs, or of sets that are established, is set to be N ; there could be at most N sets
with one party in each set. If this process is finished, and the number of parties used
is not N , then the process matrix is not causally ordered. The code outputs a message
on the command window and the code stops.
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The simplified version of the code is the following, whereWn is the input process
matrix where the output of party n is traced out and replaced by the identity matrix
of the same dimension. Hence, the condition Wn = W for a party n is Eq. (6.3) for
a party A.

Result: The maximal non-signaling sets.
remaining parties = 1:N;
counter = 0;
for s =each set;
do

for n = remaining parties;
do

if n is last (using condition (6.3)) then
counter = counter+1;
if counter = N then

break;
end

end
end

end
Algorithm 1: How the code establishes the maximal non-signaling sets

Output: The code outputs the first result on the command window: the_sets is a
matrix where in the first row are the parties of the set1 (the last parties), second row
are the parties of set2, and so on.

Comment on the complexity: To establish set1, the code makes N queries to the
process matrix. In the worst case scenario, one party will belong to this set. To
establish the set2, the code makes N-1 queries, and so on. N + (N-1) + (N-2)
+ · · · ∼ N2. Hence, the total number of queries during this stage is quadratic to
the number of parties.

Stage 2: Causal Arrows

Definitions: A directed graph is a pair G = 〈V, E〉, where V = {V1, ..., Vn} is a set of
vertices (or nodes) and E ⊂ V × V is a set of ordered pairs of vertices, representing
directed edges. A directed path is a sequence of directed edges where, for each edge,
the second vertex is the first one in the next edge. A directed cycle is a directed
path that ends up in a vertex already used by the path. A DAG is a directed graph
with no directed cycles. We refer to edges as causal arrows. If every arrow in the
DAG corresponds to a non-trivial channel in the process matrix, the DAG is called
minimal. From another perspective, a DAG is minimal if, by removing any arrow
from it, then the W is not any more Markov with respect to the resulting DAG.

The output of this stage is a minimal DAG.
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Remove open output subsystems: The first task is to check whether there are any
open output subsystems. For party A, this is done using the linear constraint (6.13).

1̃AOi ⊗ TrAOi
W = W. (6.13)

When an open output subsystem has been found, there is a message on the command
window: “There are open subsystems: subsystem i of party A of dimension dAO ”.
The code traces out this subsystem from the process matrix. The information that this
system was open is being tracked down so that the right labelling of the subsequent
subsystems is kept. For instance, if the 3rd subsystem was open, what was earlier
the 4th becomes the 3rd, but each time that it is labelled it will still be addressed to
as the 4th.

Primal causal arrows: The next task is to check for a causal arrow between the
pair of parties. It first checks for primary causal arrows, which we call the arrows
between adjacent non-signaling sets. We call secondary the causal arrows between
parties from distant sets. The reason for this distinction between the causal arrows
is because it is guaranteed that there is a primal causal arrow between each pair of
adjacent sets, whereas this is not the case for secondary arrows.

The code establishes a causal arrow between two parties using the following linear
constraint. During this process, the code looks into a pair of parties, belonging to
adjacent sets, say party A and B, with A ≺ B (in the code named as n1 and n2,
respectively). Looking at the output system of A and the input system of B

1̃BO ⊗ TrBO (TrAI W ) = TrAI W. (6.14)

Each time the above constraint is satisfied, then the associated output system will not
be checked again. An output system cannot belong to more than one causal arrow,
whereas an input system can.

If the output of party B is decomposed into subsystems, then the above constraint is
checked for each subsystem separately, by replacing BO with every output subsystem
BOi . Note, again, that each time the above constraint is satisfied, then the associated
output subsystem will not be checked again

1̃BOi ⊗ TrBOi
(TrAI W ) = TrAI W. (6.15)

For each arrow the code will extract the term corresponding to this arrow, in
the process matrix—which will be the channel representing the causal arrow if the
process is Markovian. This term will be used at the end of the code, to construct the
test-process matrix and compare it with the original, to conclude on Markovianity of
the process. This term is extracted by tracing out all systems from the process matrix
apart from the systems that are examined: the input of B and output of A (be it a
system or a subsystem). We can call this the ‘complementary system of AO BI ’ and
denote it by AO BI

T AO BI = TrAO BI
W. (6.16)
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Below is a simplified version of the part of the code that removes the open output
subsystems and establishes the primal causal arrows.

N_sets is the number of sets, established in the previous section.;

for set1 =1:N_sets;
do

for set2 = set1 + 1;
do

for n1 =the parties is set1;
do

for n2 = the parties in set2;
do

if n2 has output subsystem;
then

for each subsystem n2k;
do

if n2k is open;
then

Output on the command window, store this info;
end

end
Checked all subsystems of n2, trace out the open ones;
Now check for primal causal arrows;
for each subsystem n2k ;
do

if there is an arrow from n2k to n1 (using Equation (6.7));
then

Extract the corresponding factor in the process matrix;
store it as subterm{n2,n1,k};

end
end

else
(If n2 has no subsystems.);
if there is an arrow from n2 to n1 (using Equation (6.6));
then

Extract the channel factor in W; store it as term{n2,n1};
end

end
end

end
end

end
Algorithm 2: How the code removes the output open subsystems and establishes
the causal arrows
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Secondary causal arrows: Now the code proceeds to the discovery of secondary
causal arrows. This process is the same as for the primal causal arrows, with the
difference that the pair of parties that are checked for a causal arrow do not belong
to adjacent sets but distant ones. Again, only remaining output systems and output
subsystems are being checked that have not been associated with a causal arrow yet.
Again, after an arrow has been established the associated output will not be checked
again.

At this stage, a sanity check occurs. The code looks for unused output subsystems
of parties that are not last. This should not occur. A party has either an open output
subsystem, which at this stage has been detected already and traced out, or an output
subsystem that should have been used up in a causal arrow. If the code finds any, it
outputs a message on the command window, suggesting that there must be an error
in the code, as this should not have happened.

Next the code establishes the parties that are causally independent: this happens
either when they are all causally independent and so there is one set which is the first
and also the last, or when a party is last and has also no incoming arrow. In any case,
there is a message in the command window for the causally independent parties.

Stage 3: Markovianity

Definitions: Markovian process: If {F1, F2, ..., M1, M2, ...L1, L2, ...} is a set of
parties where F , M and L is the label for the three set of parties described above
(first, middle, and last), respectively, then their process matrix would be

WF1
I F

1
O ... = ρ

F1
I

1 ⊗ ρ
F2
I

2 ⊗ · · · T �M1
M1

I ⊗ T �M2
M2

I ⊗ ...1L1
O L

2
O ..., (6.17)

where T �M j
M j

I is a matrix representing a CPTP map T from �M j
to M j

I via the iso-

morphism3 T �M j
M j

I := I ⊗ T (|φ+〉〈φ+|) ∈ H�M j ⊗ HM j
I . From now onwe identify

a channel with its matrix representation.
This is a rather cumbersome process. Although rather simple to explain to a

human, the implementation of the code turned out to be quite lengthy—it takes up
half the code. So far the code has established the non-signaling sets and the causal
arrows, or else, the DAG. The way to test Markovianity is to construct a test-matrix,
Wtest, compatible with only the elements found in the DAG (parties that are first,
all channels, parties that are last). These elements are extracted from the process
matrix. The rationale is that, if the process is Markovian, then the process matrix
will be a tensor product of factors, corresponding only to the elements found in the
DAG. Hence, if one constructs a test-matrix that has input states for the first parties,

3This isomorphism is the same as the one used to describe the CP maps of the parties, but without
transposition.
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channels connecting each remaining party to their parent space, and identity matrix
for the last parties, this matrix should be equal to the original process matrix.

These factors are extracted from the process matrix by tracing out all the systems
except for those in which the causal arrow lives. Input states live on the input space
of each first party, identity matrices live on the output space of each last party, and
channels live on the input space of a party and its parent space (the collection of
output systems and output subsystems with an arrow towards the party).

Some of these factors have already been extracted by the code so far. As men-
tioned in the previous stage, for each causal arrow, the corresponding factor is stored.
However, only when the parent space of this arrow is a single output system, this
factor is the channel for that arrow and is thus useful. When the parent space is more
than one system, to extract the corresponding channel one has to take into account
the whole parent space. This is the first task of this stage. Such a factor is extracted
by tracing out all the systems except for those that the channel lives on

T �A AI = Tr
�A AI

W. (6.18)

Next, the code extracts the input states for the first parties, and the output matrices
for the last parties (which should be the identity matrix).

The test-matrix is almost ready. It contains all the elements whose total Hilbert
space covers all the input and output systems of the parties. However, if we call W
a single system that lives on a tensor product of Hilbert spaces of subsystems, where
eachHilbert space corresponds to inputs and outputs of parties, then these subsystems
have to be ordered in the process matrix: for three parties with two output subsys-
tems on the second party it would be W AI AO BI BO1 BO2CICO and the corresponding
subsystems would follow that exact order.

For example, if the found DAG is the one from Fig. 6.6, a test-matrix initially will
have all the right factors but not in the right order

Wtest = T BO2CO1 AI ⊗ TCO2 BI ⊗ T BO1 DI ⊗ ρCI ⊗ 1AO ⊗ 1DO . (6.19)

The intricacy of this stage lies in the fact that the test-matrix must have the right
order for all the inputs and outputs of the parties, namely AI AO · · · DO . Briefly, the
code sorts the subsystems such that each input of a party is followed by the output
of that party or by the output subsystems of that party. Next, the whole parties (input
and output space) are being sorted. Finally, the output subsystems are also sorted.

Output

For a causally ordered process, the code outputs the maximal non-signaling sets and
their causal order. Next it outputs the causal arrows, primal and secondary. For a



Appendix: Ze Code: Implementation 147

Fig. 6.6 Example of a
DAG: It consists of four
parties, two of which have
two output subsystems A

B

C

D

1 2

1 2

non-Markovian process, these can be ignored. Right after, it outputs if the process is
Markovian or not. For a Markovian process it outputs the DAG.

Below is an example of an output of the code, given some inputs (Table 6.1). The
output of the code is the left part. Comments are added on the right part to enhance
the understanding of each output of the code. These comments are only shown here,
it is not an output of the code. As an example, a Markovian process is used with
parties {1, 2, 3, 4} and causal order {2 ≺ {3, 4} ≺ 1} and a causal model as shown
in the diagram below.

For the full causal model, one needs the exact mechanisms, namely the channels
and the specific input states of the first parties. These can be accessed as follows.

For the input states, they are stored in the form term_input{x}, where x is a
party that belongs to the first set, i.e. {2} in the above example.

For an arrow, in which the receiving party has only one incoming arrow and the
associated output system is not a subsystem, it is stored as term{x,y}, for the
arrow from party x to party y. Also, the last parties are stored like that, with y being
N + 1, where N is the total number of parties. In our example there is one term of
that type, which is term{1,5} because party 1 is last and N = 4. This term is the
identity matrix with the dimension of the output system of that party.

For an arrow, in which the receiving party has only one incoming arrow and the
associated output system is a subsystem, it is stored as subterm{x, y, z}, for
the arrow from subsystem z of party x, to party y. In our example it would be:
subterm{2,4,1} and subterm{2,3,2}.

For arrows where the parent space is more than one party, meaning that there
is more than one incoming arrow to the receiving party, the overall channel from
the parent space of party x to party x is stored as subterm_tot{x,1}. In our
example, those aresubterm_tot{1,1} being a channel from the output of parties
{2, 3, 4} to the input of 1 (Fig. 6.7).
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Fig. 6.7 The code outputs
this DAG, given the
particular example of a
Markovian process matrix

Node 1

Node 2

Node 3 Node 4
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Chapter 7
Summary

This thesis tackled the concept of causality from two perspectives. First, in a general
operational framework where a number of local experiments are described by some
probabilistic theory, we asked what are the constraints that causality imposes on their
correlations. Our definition of causality, that is, the constraints on the correlations, is
compatible with the following intuition: a local experiment cannot affect the occur-
rence of events in the past or absolute elsewhere of that experiment, nor the strict
partial order on such events and the experiment in question. Note that this definition
is compatible with a dynamical causal order between the local experiments, that is,
one experiment can affect the causal order between future ones. This is an important
feature, as no theory of causality has taken such situations into considerations, but
only the ones where the causal order is always static.

The second perspective through which we examined causality is in an operational
framework where the local experiments are described by standard quantum mechan-
ics. We saw what are the constraints that causality imposes on the possible corre-
lations. This framework was already developed for two parties (local experiments),
and we extended it for n parties. The transition from 2 to 3 parties was nontrivial
because of the possibility for dynamical causal order we explain above. We found
the conditions that causality imposes on the process matrix: the central object of
the framework which is used to describe all possible correlations. We commented
on the different way in which causality expresses itself within the two different
frameworks—with or without local quantum mechanics—and finally studied a few
examples of situations that are incompatible with causality. These two perspectives
were discussed in Chap. 2. The outcome of this study was a definition of causality
compatible with dynamical causal order and the observation that the definition is
expressed differently within the two approaches.

Chapter 3 was devoted to the situations that arise from the process matrix frame-
work that are incompatible with causal order, namely their processmatrix is ‘causally
nonseparable’. Given that one such process matrix, the ‘quantum switch’, has an
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experimental realization, we developed in Chap. 3 a mathematical tool to ‘witness’
such incompatibility with causality in those realizations. A ‘causal witness’, similar
to an entanglement witness, provides a list of quantum operations that are required
to be performed by the parties involved in the realization of the process matrix. Their
combined statistics proves causal nonseparability. With the tool of causal witnesses
fully developed, one can always check whether a given process matrix is causally
separable, and if it is not, it provides the optimal way to witness it in the lab. Note
that this is a device-dependent way to detect causal nonseparability.

In Chap. 4, we provided a method to study the correlations compatible with a
causal order between the parties, be it fixed, probabilistic or dynamical. In analogy
to the local polytope for local correlations, we define the ‘causal polytope’ where
all its points correspond to correlations compatible with causality. The study of a
particular causal polytope provides the possible ‘causal inequalities’ that arise in a
given scenario (a number of parties and their settings and outcomes). We provide
a way to obtain process matrices that allow for the parties to obtain correlations
that violate a given causal inequality. Note that this is a device-independent way of
detecting causal nonseparability. Hence, with these computational methods we can
study particular scenarios, obtain their causal inequalities and obtain process matrix
that violate them. A next step would be to search among the latter, for those that are
physically realizable. This would of course be the holy grail, as it is uncertain that
such situations can be realized in the lab.

Finally, in Chaps. 5 and 6 we focused on causal inference: assuming the exis-
tence of a fixed causal order between a number of events, we aimed to discover their
causal relations from the obtained correlations. In Chap. 5 we tested a class of clas-
sical hidden-variable causal models for the correlations arising in a Bell scenario.
With two complementary experiments we rule out such causal models. In Chap. 6
we delved into a new way of defining causal models for quantum correlations. In this
framework, nonsignaling correlations imply causal independence, whereas signaling
ones are represented with a causal link between the parties. With this new quantum
causal modeling framework at hand, we developed the first algorithm that discovers
the underlying causal model of an arbitrary number of parties, given their process
matrix and the dimension of their input and output systems. The process matrix can
be obtained by performing informationally complete operations at each local exper-
iment. The procedure is essentially that of performing interventions at all the nodes,
to discover their causal model. Our algorithm is the first step to causal discovery for
quantum systems.

Overall, in this thesis we developed a concept of causality in theory-independent
and theory-dependent terms. We saw that the effects of causality are different in the
two frameworks. We developed mathematical tools for the theory-dependent case,
the process matrix formalism. These helped us probe the interesting cases, i.e those
incompatible with causality. First at the level of process matrices, with our causal
witnesses, and second at the level of probabilities, with our causal polytopes.We then
stepped into the experimental land for a while to rule out a class of causal models that
can explain quantum correlations that violate the usual inequality but not another one,
and finally we moved to a new causal modeling framework for quantum mechanics.



7 Summary 153

This time we thought of causality not as an elusive concept that can take indefinite
values, neither as a classical concept that we cannot fit into quantum mechanics.
Instead, we considered situations with a causal order between a number of local
experiments, and we followed a quantum causal modeling framework to develop the
first algorithm that, given data from local interventions, it discovers the underlying
quantum causal model. That’s all folks).
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